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WEFix: Intelligent Automatic Generation of Explicit Waits for
Efficient Web End-to-End Flaky Tests
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ABSTRACT
Web end-to-end (e2e) testing evaluates the workflow of a web appli-
cation from beginning to end. It simulates real-world user scenarios
to ensure the application flows behave as expected. Web e2e testing
plays an indispensable role in the development of modern web ap-
plications. However, web e2e tests are notorious for being flaky, i.e.,
the tests can produce inconsistent results, passing or failing unpre-
dictably, despite no changes to the code under test. One common
type of flakiness in web e2e testing is caused by nondeterministic
execution orders between the test code and the client-side code
under test. In particular, UI-based flakiness emerges as a notably
prevalent and challenging issue to mitigate. Such flaky tests are
challenging to fix because the test code has limited knowledge
about the client-side code execution.

In this paper, we propose WEFix, a technique that can automati-
cally generate fix code for UI-based flakiness in web e2e testing. The
core of our approach is to leverage browser UI changes to predict
the client-side code execution and generate proper wait oracles.
We evaluate the effectiveness and efficiency of WEFix against 122
web e2e flaky tests from seven popular real-world projects. Our
results show that (1) UI-based flakiness is prevalent; (2) implicit
waits introduce significant runtime overhead; (3) WEFix dramati-
cally reduces the overhead (from 3.7× to 1.25×) while still achieving
a high correctness (98%).

1 INTRODUCTION
Web end-to-end (e2e) testing [52] involves testing a web applica-
tion’s workflow from beginning to end. Web e2e testing evaluates if
an applicationworks as expected by simulating different user behav-
iors. As the complexity of web applications grows, web e2e testing
is becoming increasingly important in web development [13, 32].
For example, Facebook mandated the full deployment of web e2e
testing in continuous delivery as early as 2015 [17].

Despite their importance, web e2e tests are notorious for being
flaky. Flaky tests are software tests that produce inconsistent results,
passing or failing unpredictably, despite no changes to the code
under test. For example, at Google, it was reported that around
16% of their tests were flaky [34]. According to a recent study, a
widely-used network application produced as many as 18 failures
out of 100 executions of the test suite [38].

One common type of flakiness in web e2e testing is caused by
nondeterministic execution orders between the server-side test
code and the client-side browser code under test [2, 19, 28]. In
particular, UI-based flakiness emerges as a notably prevalent and
challenging issue to mitigate, which has been widely acknowledged
by both researchers [41] and developers [26, 48]. UI tests refer to
tests that validate the correct behavior of a user interface, while
UI-based flaky tests are UI tests that are flaky. In this paper, our
research pivots towards UI-based flakiness.

In fact, UI-based flakiness has already persisted for over a decade.
In 2009, the Google testing team proposed to resolve such flaky tests
by adding wait statements, e.g., adding a 2-second delay, to wait
for the completion of each browser event (such as AJAX requests
and page load) [23]. We define the approach of waiting for a fixed
amount of time as implicit waits, also known as timeouts or thread
sleeps. While implicit waits appear to be a straightforward remedy
to flakiness, our experiment shows that implicit waits can introduce
up to 36× runtime overhead (Table 3), making it impractical for
real-world web testing environments.

As a result, intentional wait should be added only at locations
where flakiness is likely to occur. We define this more efficient
approach as explicit waits, which wait until a certain oracle or
condition is met, thereby accommodating dynamic environmental
factors, e.g., network delays and server loads. In practice, however,
manually selecting appropriate explicit waits creates significant
challenges for developers: First, it is difficult to pinpoint where
the flakiness may occur and what explicit conditions should be
expected. Second, manual insertion of explicit waits can be error-
prone because extensive use of explicit waits are needed to combat
the ubiquity of such flakiness.

To address these challenges, we propose WEFix, which auto-
mates the insertion of appropriate explicit waits at flaky-prone
locations, achieving a balance of high correctness and low over-
head. Specifically, WEFix first records the browser-side DOM muta-
tions triggered by each command on the fly. These DOM mutations
will be used by the server-side test code to predict the client-side
operations. To record the mutations, WEFix uses cookies as the
communication channel between the test code and the browser-side
code under test. WEFix then generates wait oracles for the test code
based on these mutation records. Finally, WEFix employs a finite
state machine to model the DOM mutation events, ensuring that
no additional mutations occur once the oracle is met and that each
command waits for all GUI changes to conclude before proceeding
to the next command. Our evaluation on seven popular GitHub
web projects shows that 65.7% (1,145 out of 1,743) of the commands
are flaky-prone, indicating UI-based flakiness is common. We re-
produce 122 UI-based flaky tests to evaluate the effectiveness and
efficiency of WEFix. Our results show that WEFix successfully fixes
98% (120 out of 122) of the flaky tests and reduces the overhead
from 3.7× to 1.25× compared to implicit wait approaches.

In summary, this paper makes the following contributions:

• We propose WEFix, which automatically inserts explicit
waits to fix flakiness by generating wait oracles based on
DOM mutations.

• We evaluate WEFix on seven popular GitHub projects, and
the results show that (1) UI-based flakiness is prevalent;
(2) implicit waits introduce significant runtime overhead;
(3) WEFix dramatically reduces the overhead (from 3.7× to
1.25×) while still achieving a high correctness (98%).
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• We make WEFix publicly available on NPM [7], which fea-
tures a user-friendly UI panel to help developers analyze
UI-based flaky tests.

2 BACKGROUND
2.1 Web E2e UI Test
A typical web e2e UI test consists of a sequence of commands fol-
lowed by assertions. Commands are driver functions used to emulate
web user behaviors on a browser. These behaviors include browser
interactions such as navigating to a web page and element inter-
actions such as clicking a DOM element. Assertions are test code
statements used to validate whether a DOM element’s value or
state meets certain conditions. For example, an assertion can be
checking the presence of a DOM element on the current web page.

1 test('age', async () => {

2 const driver = new Builder ().forBrowser('chrome ').

build();

3 driver.get('http :// localhost :5000');

4 name = driver.findElement(By.id('name'));

5 name.sendKeys('Bob', Key.ENTER);

6 expect(driver.findElement(By.id('age').value).tobe

(23);

7 driver.close();

8 }

Listing 1: A web e2e UI test example (age.test.js).

Figure 1: The web page of the example shown in Listing 1.

Listing 1 shows a web e2e UI test example written in JavaScript.
It tests the web page shown in Figure 1 using the Selenium web
driver [44]. Selenium is one of the most popular web drivers that
provides various commands to interact with web elements similarly
to a typical web user. Test code shown in Listing 1 first creates a
driver instance (line 2) and navigates to the web page located at
‘http://localhost:5000’ (line 3). Next, the test code finds the
element with id ‘name’ (line 4), adds a string ‘Bob’ into this editable
field, and clicks the ENTER key (line 5). As shown in Figure 1, these
commands will initiate a search for the age of the person named
‘Bob’. Finally, the code asserts if the value of the element with id
‘age’ returned from the search is equal to the expected outcome 23
(line 6). If so, the test passes. Otherwise, the test fails.

2.2 UI-Based Flakiness
One common type of flakiness in web e2e UI test is caused by
nondeterministic execution orders between the test code and the

client-side code under test. In web e2e testing, the test code sends
commands through WebDriver to guide the client-side code ex-
ecution, where each command may trigger multiple client-side
operations. For example, clicking the ENTER key may result in
several operations, including sending a value to the server, retriev-
ing data from a database based on the input, and finally displaying
the result on the web page. The time to complete all associated
operations is subject to various factors, e.g., network delays and
server loads. If some operations from one command are not com-
pleted before executing the next command, the UI test can yield
flaky results because of potential data or control flow dependencies
between commands.

The test code shown in Listing 1 contains one such flakiness.
The command sendKeys at line 5 inputs ‘Bob’ and initiates a server
search for Bob’s age. Once the search is done, the age value will be
sent back to the client side and then inserted and displayed in an
element with id ‘age’. The time required to complete these changes
can affect whether the element is updated before the subsequent
assertion at line 6. If the update is successful, the test will pass;
otherwise, it will fail. Therefore, this test appears to be flaky.

2.3 Flaky-Prone Commands
A command is deemed flaky-prone if its associated operations may
not fully complete before proceeding to the subsequent command.
We quantify the likelihood of a test being flaky by calculating the
proportion of flaky-prone commands among all commands. Focus-
ing on UI-based flakiness, we keep track of flaky-prone commands
by monitoring all DOM changes a command causes. DOM changes
are described as mutations in the browser.

Figure 2: Interleaved mutations triggered by two consecutive
commands.

Figure 2 shows two consecutive commands 𝐴, 𝐵, and their trig-
gered mutations. In JavaScript, commands are implemented with
promise: once the promise of command 𝐴 is settled, command 𝐵

initiates. Let 𝑆𝐴 and 𝐸𝐴 denote the start and promise settled time
of command 𝐴, and 𝑇𝑚 represents the occurrence time of mutation
𝑚. For a command 𝐶 and its triggered mutation set𝑀 , if ∃𝑚 ∈ 𝑀
such that 𝑇𝑚 > 𝐸𝐶 (i.e., there exists a mutation that happens af-
ter the promise is settled), we say command 𝐶 is flaky-prone. In
Figure 2, both command 𝐴 and 𝐵 are flaky-prone, since 𝑇𝑚𝑘

> 𝐸𝐴
and 𝑇𝑚𝑛

> 𝐸𝐵 . Notably, 𝑇𝑚𝑘
> 𝑆𝐵 indicates that mutations from

command 𝐴 haven’t concluded when B starts to execute.

3 WEFIX
In this section, we describe WEFix, a tool that can automatically
and intelligently insert explicit waits to fix UI-based flakiness. The
workflow of WEFix is shown in Figure 3. WEFix consists of two
components, Mutation Recorder and Oracle Generator. The goal of
Mutation Recorder is to record runtime mutation events for each

2
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Figure 3: The workflow of WEFix.

command. Based on the mutations collected by Mutation Recorder,
Oracle Generator generates a proper wait oracle for each command
in the test code. Specifically, Mutation Recorder first identifies all
e2e test files written in JavaScript in a given web application (❶). It
then adds analysis code into the test files through instrumentation
(❷). Next, it runs the instrumented code on a platform, e.g., circleCI
(❸). The next step is to record the runtime DOM mutations and
save them in a log file (❹). Finally, the Oracle Generator uses the
mutation records to generate proper fixes and transform the test
files based on the fix (❺).

3.1 Mutation Recorder
Browsers provide a web interface called MutationObserver [35] that
monitors changes made to the DOM tree. However, it is difficult
to determine which mutation is triggered by which command. In
addition, test frameworks do not provide reliable data transfer
methods between the test code and the browser-side code under
test. To address these challenges, Mutation Recorder is designed to
collect mutation information at runtime for each command.

Figure 4: Mutation Recorder runtime.

Figure 4 shows the runtime of the Mutation Recorder. The left
side of Figure 4 shows the runtime of a single command in the
test code, and the right side shows the runtime of mutations in the
browser.

3.1.1 Test Code Runtime. On the test code side, Mutation Recorder
instruments and adds analysis code before (①) and after (②) each
command. To instrument each command, we parse the test code
to an Abstract Syntax Tree (AST) using the Babel [8] library and
identify command functions in the test code that perform browser
interactions or element interactions. Before each command is ex-
ecuted (①), the analysis code first ensures the MutationObserver
API is enabled. This step is needed because the MutationObserver
API is turned off by default when navigating a new page. Next, the
analysis code clears the cookie list used to store history mutations.
To enable the test code to reliably generate wait oracles, we need to
send mutations information observed from the browser side to the
text code side on the fly. However, the current web drivers that use
W3C wire protocol [54] for communication between the test code
and the browser do not provide a reliable way to transmit extra data.
Thus, Mutation Recorder innovatively resorts to a web mechanism,
cookies, which are useful in temporarily storing data and can be
read and modified by the web driver. During implementation, we
add identifiable labels to our created cookies, ensuring that existing
cookies are not cleared and other functionalities are preserved.

After the command is executed (②), the test code keeps listening
for mutations by reading the cookie list for 𝜔 seconds. 𝜔 represents
the listening window size. It is tricky to decide the value of 𝜔 in
advance, i.e., how much time needs to spend on listening. If 𝜔 is
too small, not all mutations are fully recorded; if 𝜔 is too large, the
runtime overhead would be greatly increased. Therefore, we design
Algorithm 1 to dynamically adjust the window size 𝜔 in real time.

Algorithm 1 Dynamic Listen Window
1: 𝑇 ← 𝑇𝑖𝑚𝑒.𝑛𝑜𝑤 ( )
2: 𝜔 ← 1 {Initialize window size as 1 second}
3: while𝑇𝑖𝑚𝑒.𝑛𝑜𝑤 ( ) < 𝑇 +𝜔 do
4: if new mutation𝑚 occurs then
5: 𝑅𝑇 ←𝑚.𝑡𝑖𝑚𝑒 − 𝑇 {m’s relative time}
6: 𝜔 ← max(2 ∗ 𝑅𝑇,𝜔 )
7: 𝜔 ← min(20, 𝜔 ) {𝜔 not exceed 20}
8: end if
9: end while

The main idea of this algorithm is to double the size of the
listening window whenever a new mutation occurs to leave enough
time for the next possible mutation. 𝑇 represents the start time of
the listening (line 1) and window size 𝜔 is initialized as 1 (line
2). Then in the while loop, it keeps listening for mutations until 𝜔
seconds have passed.When a newmutation occurs, it first calculates
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the mutation’s Relative Time RT, which is defined as its occurrence
time minus the start time𝑇 . Then𝜔 will be set to 2×𝑅𝑇 . Meantime,
𝜔 should not decrease or exceed a maximum value. The maximum
value, set empirically at 20, is utilized to ensure a sufficiently long
waiting period to ensure that all mutations are recorded in our data.
After the mutation listening stage, all the mutation records would
be saved to a local file named mutation.log.

3.1.2 Browser Runtime. On the browser side, the runtimeworkflow
is signified with the orange dotted line. Every time a new mutation
occurs on the DOM tree, the MutationObserver will generate a
mutation record𝑚, constituting a <𝑡,𝑚> pair with the mutation
occurrence time 𝑡 . Then the newly built <𝑡,𝑚> pair will be inserted
into the cookie list.

3.2 Oracle Generator
Explicit waits are preferred compared to implicit waits for fixing
flaky e2e tests in the community [11, 25, 42]. The key of explicit
waits is to determine expected conditions, which we call oracles. It
requires in-depth knowledge of DOM element changes for devel-
opers to select accurate expected conditions as the oracle. Besides,
multiple rounds of testing are usually needed to ensure that the
oracle works both correctly and efficiently.

Listing 2 is an example of using explicit waits to fix the flakiness
in Listing 1. A wait-until style statement (line 3) is added after the
flaky-prone command (line 2). In this code example, Selenium will
wait for a maximum of 4 seconds until the oracle stands. Internally,
the oracle is checked every 100 milliseconds until it returns True.

1 ...

2 name.sendKeys('Bob', Key.ENTER);

3 WebDriverWait(driver , 4).until(EC.

presence_of_element_located ((By.id, 'age')))

4 expect(driver.findElement(By.id('age').value).tobe

(23);

5 ...

Listing 2: Explicit waits manually added to fix the flakiness
in Listing 1.

However, it is challenging to choose a proper wait oracle. If the
waiting time is too long, it can impose substantial runtime overhead
in CI. If the waiting time is too short, it may not be able to fix the
flakiness at all. To ensure a proper wait oracle, Oracle Generator
is designed to automatically generate an appropriate oracle for
each command based on mutations collected by Mutation Recorder.
Specifically, Oracle Generator first prunes irrelevant mutations
(Sec. 3.2.1), then constructs mutation state machines (Sec. 3.2.2),
generates oracles for each command (Sec. 3.2.3), and finally adds
explicit waits in the text code (Sec. 3.2.4).

3.2.1 Pruning Irrelevant Mutations. To minimize the runtime over-
head, Oracle Generator first prunes two types of mutations that are
irrelevant to UI tests.
GUI-IrrelevantMutation.Not all mutations result in GUI changes.
Since our research focuses on UI-based flaky tests, we prune GUI-
irrelevant mutations from the collected mutations. Specifically, we
detect and remove three types of GUI-irrelevant mutations: (1)
Mutations outside the HTML document <body> (e.g., <head> and

<meta> elements) since these changes are not observable to a web
user; (2) Mutations that do not change the Cascading Style Sheet
(CSS) style of any element; (3) Mutations on target elements that
are invisible to the user.
Background Mutation. Some web pages may generate mutations
in the background periodically, even without any user interaction.
Background mutation is common in web page image rotation and
animation. As background mutations are not triggered by any com-
mand in the test code, it’s important to filter them out. To do so,
we aggregate all mutations on a web page and detect background
mutations based on their triggering source and occurrence time.

Figure 5: Finite state machine (FSM) representing DOM tree
status transitions via mutations𝑚1,𝑚2, ...,𝑚 𝑗 .

3.2.2 Mutation State Machine. After pruning irrelevant mutations,
we construct a finite-state machine (FSM) to model the DOM muta-
tions triggered by each command. Assume the mutation list for one
command is represented as (𝑚1,𝑚2, ...,𝑚 𝑗 ), where mutations are
ordered by their occurrence time. As shown in Figure 5, the states
in this FSM are DOM status at different times, and the transition
between states is mutation 𝑚𝑖 . The start state 𝑆0 represents the
DOM status right after the command is executed. The end state 𝑆 𝑗
represents the DOM status when no more mutation occurs.

Assume there are 𝑛 elements on the DOM tree. We define the
FSM state 𝑆𝑖 (0 ≤ 𝑖 ≤ 𝑗) as the set of all DOM tree element’s status:

𝑆𝑖 := {𝐸1, 𝐸2, ..., 𝐸𝑛} (1)
where 𝐸𝑖 (0 ≤ 𝑖 ≤ 𝑛) represents the 𝑖-th element’s status:

𝐸𝑖 := {𝐴0
1, 𝐴

0
2, ..., 𝐴

0
𝑘
,𝑇 0,𝐶0} (2)

The element status is the set of all properties that are subject to
GUI changes during runtime. Assume the element has 𝑘 attributes,
𝐴1, 𝐴2, ..., 𝐴𝑘 . 𝑇 is the element’s text value. 𝐶 is the element’s child
list size. Each component is marked with a superscript, which rep-
resents the index of the mutation deriving the element’s status. In
the start state, the superscript is set to 0, meaning that there are
no mutations yet. When a mutation 𝑚𝑡 occurs and changes the
value of a property 𝑃0, the property will be updated to 𝑃𝑡 . Adding
a superscript differentiates element status with identical properties,
ensuring the state machine proceeds linearly.

3.2.3 Oracle Generation Algorithm. The goal of Oracle Generator is
to generate a wait oracle determining the end state of the mutation
finite state machine. When the oracle is met, no further mutation
will occur. Without loss of generality, Oracle Generator uses three
properties with the latest mutation times in the end state 𝑆 𝑗 (the
properties may come from different elements) to generate three
oracles and combine them together to represent the end state. The
oracle generation algorithm is shown in Algorithm 2.
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Algorithm 2 Generate Oracle
Input: end state: 𝑆 𝑗

Output: oracle:𝑂
1: Initialization:𝑂 ← 𝑇𝑟𝑢𝑒

2: 𝑃1, 𝑃2, 𝑃3 ← properties with largest timestamp in 𝑆 𝑗

3: for 𝑃 in [𝑃1, 𝑃2, 𝑃3 ] do
4: 𝑋𝑝𝑎𝑡ℎ ← 𝑃.𝑒𝑙𝑒𝑚𝑒𝑛𝑡 .𝑡𝑜𝑋𝑝𝑎𝑡ℎ ( )
5: if 𝑃 is𝐴 then
6: 𝑜𝑟𝑎𝑐𝑙𝑒 ← “𝑔𝑒𝑡 (${𝑋𝑝𝑎𝑡ℎ}) .𝑠ℎ𝑜𝑢𝑙𝑑 (ℎ𝑎𝑣𝑒.${𝑃.𝑁𝑎𝑚𝑒 }, ${𝑃.𝑉𝑎𝑙𝑢𝑒 })”
7: end if
8: if 𝑃 is𝑇 then
9: 𝑜𝑟𝑎𝑐𝑙𝑒 ← “𝑔𝑒𝑡 (${𝑋𝑝𝑎𝑡ℎ}) .𝑠ℎ𝑜𝑢𝑙𝑑 (ℎ𝑎𝑣𝑒.𝑡𝑒𝑥𝑡, ${𝑃.𝑉𝑎𝑙𝑢𝑒 })”
10: end if
11: if 𝑃 is𝐶 then
12: 𝑜𝑟𝑎𝑐𝑙𝑒 ← “𝑔𝑒𝑡 (${𝑋𝑝𝑎𝑡ℎ} .) .𝑐ℎ𝑖𝑙𝑑.𝑠ℎ𝑜𝑢𝑙𝑑 (ℎ𝑎𝑣𝑒.𝑙𝑒𝑛, ${𝑃.𝑉𝑎𝑙𝑢𝑒 })”
13: end if
14: 𝑂 ← 𝑂 & 𝑜𝑟𝑎𝑐𝑙𝑒

15: end for

The algorithm takes the end state 𝑆 𝑗 as input and outputs an or-
acle𝑂 . The algorithm selects three properties 𝑃1, 𝑃2, and 𝑃3, which
have the latest mutation time in the end state 𝑆 𝑗 . The number of
selected properties is a trade-off between stability and complexity:
too few may not remove flakiness, while too many could gener-
ate excessively long statements, compromising human readability
and inducing additional runtime overhead. In our dataset, select-
ing three properties balances a high fix rates with readability and
low overhead. For each selected property, the algorithm creates a
Xpath [36] that the web driver can utilize to fetch the element from
the DOM tree [43]. Next, it creates an oracle using the value of
the property, where the property’s type can be attributes (𝐴), text
(𝑇 ), or child list size (𝐶). Finally, three oracles are combined with a
logical AND (&), meaning that all three oracles should be met.

3.2.4 Adding Explicit Waits. The last step is to insert the generated
oracle as an explicit wait in the original test code. Listing 3 shows
the inserted wait to the command in Listing 1.

1 ...

2 name.sendKeys('Bob', Key.ENTER);

3 waitUntil(driver.get("//*[ @id='age ']").should(have.

text , 23));

4 ...

Listing 3: Explicit waits automatically created by WEFix to
fix the flakiness in Listing 1 (age.fix.js).

In the fixed code, Oracle Generator adds an assertion after en-
tering a name Bob and clicking the ENTER key. As the waitUntil
function will suspend the test process until the oracle is met, the
test waits until the age element returns a value of 23 after pressing
the ENTER key.

4 EVALUATION
We first construct a dataset of UI-based flaky tests from real-world
GitHub projects. We extensively evaluate WEFix on these real-
world projects for its effectiveness and efficiency. We also compare
WEFix with implicit wait approaches commonly used in practice. In
particular, our evaluation aims to answer four important research
questions:

• RQ1 (UI-Based Flakiness Prevalence): How many com-
mands are flaky-prone in real-world projects?

• RQ2 (Implicit Wait Overhead):What is the performance
overhead of implicit waits for fixing UI-based flakiness?

• RQ3 (WEFix Effectiveness): How many UI-based flaki-
ness can be effectively fixed by WEFix?

• RQ4 (WEFix Efficiency):What is the runtime overhead
of WEFix and how does it compare with other approaches?

4.1 Dataset
Constructing a dataset of real-world UI-based flaky tests is nontriv-
ial [30]. We collected 100,000 popular JavaScript repositories from
GitHub using GitHub Search API [21]. In order to find out projects
containing web e2e tests, we iterate through each project’s depen-
dency file package.json, and use the following JavaScript testing
framework names as keywords to search for projects containing
web e2e tests: selenium, cypress, testcafe, nightwatch, protractor,
playwright, webdriverio and webdriver. This search resulted in 250
repositories, and the list is available on the project web page [6]. It
is noteworthy that repositories containing e2e tests are relatively
rare, primarily because e2e testing is more frequently used in com-
mercial web products than in open-source projects. We believe
that our curated dataset of open-source projects with e2e tests can
present a valuable resource for future research in web e2e tests.

To ensure quality and popularity, we focus on the 37 repositories
that have over 20,000 stars. Some repositories’ tests are not deploy-
able due to the absence of test documentation or local execution
conditions, some of which require online CI environments with
server-side support. From those that are operational, We randomly
select six projects and intentionally include the keystone project
(8,300 stars) to represent repositories with fewer than 20,000 stars.
These seven projects are used widely by organizations in the real
world. For example, Storybook [22] is a prevalent tool for UI de-
velopment, adopted by projects owned by notable companies like
Microsoft, Shopify, Airbnb, and Salesforce [51]. Keystone [20], a
Content Management System (CMS), is employed by organizations
including Atlassian and Csiro for their software development.

4.2 Implementation
WEFix is implemented in JavaScript as an NPM package [7]. De-
velopers can integrate WEFix into their web application for e2e
testing in Node.js. In addition, our tool provides a user-friendly
GUI to visually present collected mutation records, facilitating the
analysis of the flakiness. The source code and dataset can be found
on GitHub [1] and archived on Figshare [4, 6]. Deployment details
are available on the GitHub page [5].

Table 1: Mutation relative time (RT) result.

Repo Star
avg.
RT(ms)

avg. latest
RT(ms) %flaky-prone

storybookjs/storybook 80.6k -29 564 39.9%
nolimits4web/swiper 36.8k -13 790 67.1%
carbon-app/carbon 33.3k 62 1034 78.5%

atlassian/react-beautiful-dnd 31k 69 251 89.7%
react-hook-form/react-hook-form 37k -12 470 80.8%

getredash/redash 23.9k -11 619 62.7%
keystonejs/keystone 8.3k 17 201 41.2%

AVERAGE 7 561 65.7%
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4.3 RQ1: UI-Based Flakiness Prevalence
We investigate the prevalence of UI-based flakiness in real-world
web e2e tests. To do so, we run WEFix on all 367 e2e tests from the
seven selected projects. To better represent flaky-prone commands,
we report the Relative Time (RT) of a mutation, denoted as its
occurrence time relative to the next command. A negative RTmeans
the mutation occurs before the next command, and vice versa. The
result is shown in Table 1. The column “avg.RT” is the average
relative time (RT) of all mutations collected in one project. “avg.
latest RT” is the average RT of the last mutation triggered by each
command in the project. “%flaky-prone” refers to the proportion of
flaky-prone commands among all commands.

In Table 1, the “avg.RT” is distributed within a range of 0 ± 100ms.
As can be seen, three projects have a positive “avg.RT”, indicating
that UI-based flakiness is common. The “avg.latest RT” is 561. If
we choose to wait until the last mutation occurs, the average wait
time needed is around 561 ms. Besides, we count the percentage
of commands with positive RTs. We find that the average “%flaky-
prone” is 65.7%, and the atlassian/react-beautiful-dnd project has
the highest “%flaky-prone” of 89.7%.

RQ1 Takeaway: On average, 65.7% of the commands in the
studied real-world UI tests are flaky-prone.

4.4 RQ2: Implicit Wait Overhead
We investigate performance overhead of adding implicit waits after
each command. Listing 4 demonstrates adding a 2-seconds wait
following the sendKeys command in Listing 1, allowing the web
page to display the age retrieved from the server.

1 ...

2 name.sendKeys('Bob', Key.ENTER);

3 driver.waitFor (2) # seconds

4 expect(driver.findElement(By.id('age').value).tobe

(23);

5 ...

Listing 4: A 2-second implicit wait added after all commands.

Figure 6 illustrates the cumulative distribution of RT, measured
in milliseconds, across seven projects. It presents the proportion
of mutations whose RT is less than or equal to the value on the
X-axis. Based on the plot, over 95% of mutations’ RT is less than
2,000 ms (2 second). This observation informs a straightforward
strategy to mitigate UI-based flakiness: adding a 2-seconds wait
after each command in the test code so that most mutations can
finish within this period.

Although adding a 2-seconds wait is simple to implement, it
introduces significant runtime overhead. Table 2 shows the perfor-
mance comparison between the original test suite and instrumented
implicit wait version. The 2-second wait approach takes 2.4× to
4.5× time compared to the original test code. For instance, the
project redash increases the test time from 17 minutes to 41 min-
utes across its 41 test files after adding implicit waits. This dramatic
surge in test time, especially in a Continuous Integration (CI) envi-
ronment where tests run upon each new commit, can significantly
slow down software development iteration.

Figure 6: Cumulative distribution of mutation RT across
seven projects.

Table 2: Test time comparison of the original test and 2-
second implicit wait.

Repo # test file Test Time
original 2-seconds wait

storybookjs/storybook 2 16s 44s (3.1x)
nolimits4web/swiper 5 20s 1m30s (4.5x)
carbon-app/carbon 7 40s 2m58s (4.5x)

atlassian/react-beautiful-dnd 7 16s 1m10s (4.4x)
react-hook-form/react-hook-form 35 3m03s 8m17s (2.7x)

getredash/redash 41 17m04s 41m10s (2.4x)
keystonejs/keystone 5 29s 2m05s (4.3x)

RQ2 Takeaway: Adding a 2-second wait after commands
introduces significant runtime overhead (2.4× to 4.5×).

4.5 RQ3: WEFix Effectiveness
To evaluate WEFix effectiveness, we first reproduce the UI-based
flaky tests in the seven projects. Unfortunately, it is widely believed
in the field that web e2e flaky tests are difficult to reproduce. Web
e2e testing requires multiple parts of an application to work to-
gether correctly, with complicated setup processes that differ from
application to application and even from version to version. Be-
sides, the ability to reproduce flaky tests is also affected by device,
network, and other environmental factors.

To address these challenges, we reproduce UI-based flakiness
inspired by developers’ actual fix. In practice, developers typically
fix UI-based flakiness by manually inspecting its root cause and
inserting wait statements in the appropriate locations within the
test code. Based on this observation, we reproduce the flakiness
by removing these wait statements added by developers and then
rerunning these tests. Given that WEFix is designed to help devel-
opers automatically inject explicit waits to mitigate flakiness, our
method to reproduce flakiness closely mirrors real-world develop-
ment scenarios.

Rerunning a test multiple times to see if all of them pass is one of
the most effective methods to test whether a test is flaky. Existing
testing frameworks [14] normally support reruns, e.g., 3, 5, and 10
reruns. We follow the common practice used by existing work [47]
that rerun each test ten times. If all 10 runs pass, there is a high
probability that the test is not flaky. If any failure appears during
the rerun, we mark the test as c-flaky. Among the 367 tests, we
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Table 3: Efficiency and effectiveness of WEFix vs. implicit waits approaches.

WEFix 0.2-seconds Fix 0.5-seconds Fix 1-second Fix 2-seconds Fixrepo test file original
run time(s) overhead # fixed overhead # fixed overhead # fixed overhead # fixed overhead # fixed

storybook navigation.spec.ts 11.21 16.9% 1 35.2% 0 54.0% 1 85.2% 1 147.6% 1
a11y.js 1.23 2.8% 2 82.1% 1 179.7% 1 342.3% 2 667.5% 2swiper core.js 4.85 36.3% 1 1593.2% 0 1754.0% 1 2022.1% 1 2558.1% 1
background-color.spec.js 6.52 21.0% 1 111.0% 1 198.5% 1 344.2% 1 635.6% 1
basic.spec.js 4.26 7.5% 1 66.7% 1 137.1% 1 254.5% 1 489.2% 1carbon
security.spec.js 12.24 10.8% 3 21.8% 0 31.6% 0 48.0% 2 80.6% 3
focus.spec.js 1.25 50.4% 4 450.4% 4 978.4% 4 1858.4% 4 3618.4% 4
move-between-lists.spec.js 0.85 20.0% 1 112.9% 1 254.1% 1 489.4% 1 960.0% 1
reorder-lists.spec.js 0.89 23.6% 1 104.5% 1 239.3% 1 464.0% 1 913.5% 1
reorder-virtual.spec.js 0.86 17.4% 0 125.6% 0 265.1% 0 497.7% 0 962.8% 1

react
-beautiful
-dnd

reorder.spec.js 0.87 6.9% 1 94.3% 0 232.2% 1 462.1% 1 921.8% 1
autoUnregister.ts 2.45 9.4% 1 79.2% 1 164.9% 1 307.8% 1 593.5% 1
basic.ts 17.17 16.5% 4 105.0% 4 222.1% 4 417.2% 4 807.4% 4
basicSchemaValidation.ts 13.63 10.8% 3 118.0% 3 254.5% 3 482.0% 3 936.8% 3
conditionalField.ts 2.69 -2.7% 1 119.7% 1 220.1% 1 387.4% 1 721.9% 1
controller.ts 5.2 17.3% 3 133.3% 0 277.5% 3 517.9% 3 998.7% 3
customSchemaValidation 13.45 27.9% 3 110.5% 3 248.8% 3 479.3% 3 940.2% 3
reValidateMode.ts 12.9 16.4% 6 10.6% 5 71.1% 5 171.9% 6 373.4% 6
formState.ts 9.43 31.2% 6 204.9% 5 398.9% 5 722.4% 5 1369.2% 6
formStateWithNestedFields.ts 8.56 20.8% 6 148.8% 5 306.5% 6 569.4% 6 1095.1% 6
formStateWithSchema.ts 9.59 27.3% 6 148.9% 5 305.3% 6 566.0% 6 1087.4% 6
isValid.ts 4.08 7.6% 4 148.0% 4 295.1% 4 540.2% 4 1030.4% 4
manualRegisterForm.ts 4.97 4.8% 1 94.8% 1 203.4% 1 384.5% 1 746.7% 1
reset.ts 2.19 4.6% 1 75.8% 1 171.7% 1 331.5% 1 651.1% 1
useFieldArray.ts 21.37 24.9% 9 159.3% 8 385.3% 9 762.0% 9 1515.4% 9
setError.ts 2.18 -1.8% 2 106.0% 2 216.1% 2 399.5% 2 766.5% 2
useFormState.ts 5.27 1.1% 1 124.1% 1 255.0% 1 473.2% 1 909.7% 1
useWatch.ts 2.76 12.3% 3 87.3% 3 217.8% 3 435.1% 3 869.9% 3

react-hook
-form

watch.ts 2.22 0.5% 1 123.9% 1 218.5% 1 376.1% 1 691.4% 1
dashboard_spec.js 7.83 13.8% 1 57.5% 1 134.1% 1 261.8% 1 517.2% 1
view_alert_spec.js 6.28 27.1% 3 64.5% 3 117.0% 3 204.6% 3 379.8% 3
filters_spec.js 3.6 1.4% 0 47.5% 0 97.5% 0 180.8% 1 347.5% 1
query/parameter_spec.js 30.78 14.1% 13 71.9% 9 157.6% 11 300.6% 12 586.5% 13
sharing_spec.js 11.36 7.9% 2 110.4% 0 134.2% 0 173.8% 2 253.0% 2
create_data_source_spec.js 5.4 3.5% 3 93.5% 3 171.3% 3 300.9% 3 560.2% 3
create_destination_spec.js 3.05 24.3% 2 81.0% 2 140.0% 2 238.4% 2 435.1% 2
share_embed_spec.js 10.55 47.6% 1 49.5% 1 117.7% 1 231.5% 1 459.0% 1
filters_spec.js 3.59 36.2% 2 128.7% 2 279.1% 2 529.8% 2 1031.2% 2
dashboard/parameter_spec.js 7.58 20.3% 4 54.2% 0 109.6% 0 202.0% 4 386.7% 4
organization_settings_spec.js 3.83 0.0% 1 77.3% 1 139.9% 1 244.4% 1 453.3% 1
edit_profile_spec.js 7.67 43.3% 5 48.6% 0 111.2% 5 215.5% 5 424.1% 5
box_plot_spec.js 2.19 0.0% 1 42.0% 1 83.1% 1 151.6% 1 288.6% 1

redash

choropleth_spec.js 5.09 3.9% 1 58.0% 1 116.9% 1 215.1% 1 411.6% 1
filters.test.ts 4.67 19.5% 1 62.5% 1 113.9% 1 199.6% 1 370.9% 1keystone list-view-crud.test.ts 8.97 12.7% 3 55.0% 2 95.1% 3 162.0% 3 295.8% 3

SUMMARY 16.0% 120 133.3% 89 241.7% 106 422.3% 118 783.6% 122

reproduce 122 tests exhibiting flakiness and use these reproduced
c-flaky tests for the effectiveness evaluation.

Table 3 presents the WEFix fix result on the 122 c-flaky tests.
The second column presents the e2e test files containing c-flaky
tests. To verify the effectiveness of the WEFix, we compare it with
four implicit wait methods, each with different waiting times: 0.2s,
0.5s, 1s, and 2s. We measure the percentage of test files that could
be successfully fixed. If the repaired test passes 10 reruns, we mark
it as fixed, the number of which is shown in “# fixed” columns.

WEFix successfully fixes 120 out of the 122 tests, achieving a
98.4% fix rate. In comparison, implicit wait methods fix 89, 106, 118,
and 122 tests, respectively, revealing an upward trend in the fix rate
with increasing wait time. In Table 3, failed fix cases are shown with
blue boxes. WEFix failed to fix two test files. Our analysis shows
that the flakiness in both cases is caused by inherent flakiness

introduced by third-party tools that WEFix cannot access and thus
cannot generate a proper fix for them.

RQ3 Takeaway:WEFix successfully fixes 98.4% the UI-based
flakiness, outperforming implicit wait methods of 0.2 seconds,
0.5 seconds, and 1 second.

4.6 RQ4: WEFix Efficiency
One major design goal of WEFix is to incur a low runtime overhead
while ensuring a high fix rate. We collect the run times of the
original test, test code applyingWEFix, and code with implicit waits
after all commands. We compute the overhead for each method as
the percentage increase in run time introduced by the method. The
result is shown in Table 3. Compared with our tool, implicit wait
methods have much larger overheads. The 0.2-sec, 0.5-sec, 1-sec,
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and 2-sec methods have an average overhead of 2.33× (133%), 3.42×
(242%), 5.22× (422%), and 8.84× (784%), respectively.

Table 4: One round e2e test time of seven projects.

Repo Original WEFix Implicit Wait
0.2 sec 0.5 sec 1 sec 2 sec

storybook 14s 18s 17s 22s 29s 44s
swiper 20s 25s 27s 38s 55s 1m30s
carbon 40s 47s 54s 1m15s 1m49s 2m58s

react-beautiful-dnd 16s 18s 21s 30s 43s 1m10s
react-hook-form 3m03s 3m52s 3m34s 4m22s 5m40s 8m17s

redash 17m04s 20m47s 19m29s 23m06s 29m07s 41m10s
keystone 29s 41s 39s 53s 1m17s 2m05s
Overhead 1.25× 1.27× 1.68× 2.35× 3.7×

We also measure project-level overhead. We apply these meth-
ods to the entire e2e test suite of each project and compare the
duration of one round of e2e testing. The result is shown in Table 4.
WEFix has the lowest average overhead (1.25×), while the 2-sec
wait method incurs the highest (3.7×).

RQ4 Takeaway: Compared with implicit wait approaches,
WEFix significantly reduces the runtime overhead while en-
suring a high fix rate.

5 DISCUSSION
Although our experiments have shown that WEFix is both efficient
and effective, WEFix has several limitations. First, our tool is con-
figured to support e2e tests using either Cypress or Selenium, two
of the most widely used e2e testing frameworks [12]. However, our
current implementation does not support other e2e testing frame-
works. We believe that WEFix can be extended to any e2e testing
framework with adding additional support for their grammars.

Second, while the GitHub projects in our dataset are broadly
used by real-world organizations, they are relatively small web de-
velopment tools, compared with large, mature web applications or
frameworks, to which we currently have no access. New challenges
may arise when WEFix is applied to those large web applications
with a lot more e2e tests. Moving forward, we plan to reach out to
those organizations managing such large-scale applications, aim-
ing to collaborate and explore the applicability of WEFix in more
extensive web environments.

6 RELATEDWORK
Flaky Test Studies. Flaky tests have been extensively studied. Luo
et al. [33] investigated 201 commits from 51 projects that fixed
flaky tests and classified flakiness into several types, including
concurrency problems. Eck et al. [16] presented an empirical study
of flaky tests from the perspective of developers, firstly introducing
“test case timeout” category flakiness, which requires surprising
effort to fix. Lamet al. [29] categorized flakiness from pull requests
in six Microsoft subject projects. Gruber et al. [24] performed an
empirical analysis of flaky tests in Python. Parry et al. [39] provided
a comprehensive survey of 76 papers on flaky test research.

Flaky Test Detection. Armed with basic knowledge of flakiness,
many works have been done to detect flaky tests. Based on histori-
cal commits in open-source projects, Luo et al. [33] offered insights
into manifesting test flakiness. Bell et al. [10] presented an approach
using differential coverage for detecting flaky tests. Shi et al. [46]
presented a tool targeting flakiness arising from deterministic im-
plementations of non-deterministic specifications. Silva et al. [49]
focus on detecting asynchronous wait and concurrency flakiness
by introducing environment noise using stress-loading tool. And
many works [3, 15, 27, 40, 53] have been done to apply machine
learning for flakiness detection.

Mitigation and Repair. There is increasing research efforts to
mitigate or repair specific types of flaky tests. Bell et al. [9] presented
a tool to mitigate flakiness due to order-dependent tests. Lam et
al. [31] proposed an algorithm to enhance the soundness of test suite
prioritization with respect to test order dependency. Shi et al. [45]
investigates how to mitigate inconsistent coverage during mutation
testing and developed iFixFlakies [47], a tool for automatically
repairing order-dependent tests. Fazzini et al. [18] developed a tool
to automatically generate test mocks [50] for mobile applications.
Zhang et al. [55] proposed a technique for repairing flaky tests
related to non-deterministic specifications.

Web E2e Flaky Tests. In recent years, web e2e testing has re-
ceived increasing attention from the academic community. Romano
et al. [41] conducted an empirical study on UI flaky tests and found
that “async wait” (i.e., concurrency) flakiness predominates in UI
testing. Olianas et al. [38] provided an experience report of fixing
web e2e flakiness from the industry perspective. Olianas et al. [37]
proposed SleepReplacer, which replaces existing thread sleeps with
explicit waits. However, SleepReplacer differs from WEFix in two
aspects. First, it operates in a passive manner, only replacing ex-
isting thread sleeps, which inherently restricts its applicability. By
contrast, WEFix can proactively insert explicit waits for flaky com-
mands, making it applicable to any newly written e2e test. WEFix
can also insert wait statements automatically during development
time, thereby significantly reducing the manual effort to select
proper explicit waits. Second, SleepReplacer requires multiple runs
of the test to tentatively replace existing thread sleeps and validate
no new flakiness is introduced, which takes several minutes to
replace a single wait. WEFix generates the DOM mutation profile
in a single run and only requires around one second on average to
instrument one flaky command.

7 CONCLUSION
We present WEFix, an efficient tool that generates explicit waits for
UI-based flakiness in web e2e testing. We evaluate WEFix on 122 UI-
based flaky tests collected from seven popular GitHub web projects.
Our evaluation shows that adding implicit waits after commands
introduces significant runtime overhead. Compared with implicit
wait approaches, WEFix significantly reduces the runtime overhead
while still ensuring a high fix rate. In practice, WEFix can be applied
to reduce runtime overhead for web e2e tests or assist developers
in automatically and intelligently inserting wait statements during
development, significantly reducing manual efforts.
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