
PTV: Scalable Version Detection of Web Libraries and its
Security Application – Technical Report

XINYUE LIU and LUKASZ ZIAREK, University at Buffalo, USA

This document provides proofs and time complexity analysis for algorithms introduced in the paper PTV:
Scalable Version Detection of Web Libraries and its Security Application.

1 ALGORITHM DESIGN
In this section we provide the core algorithms and their complexity analysis that underpin our

implementation of pTree-based JavaScript library detection.

1.1 Basic Definition
1.1.1 Labeled Tree. We denote a labeled tree as 𝑇 = (𝑉 , 𝐸, Σ, 𝐿), consisting of a vertex set 𝑉 , an

edge set 𝐸, an alphabet Σ for vertex labels, and a labeling function 𝐿 : 𝑉 → Σ. The size of 𝑇 is the

number of vertices in the tree.

A path is a sequence of vertices 𝑝 = (𝑣1, 𝑣2, ..., 𝑣𝑛) ∈ 𝑉 ×𝑉 × ... ×𝑉 such that 𝑣𝑖 is adjacent to

𝑣𝑖+1 for 1 ≤ 𝑖 < 𝑛. When the path’s first vertex is root and the last vertex is a leaf, we call it a full
path. For a tree 𝑇 , we use 𝑇 .𝑃 to represent the set of all paths in 𝑇 , and 𝑇 .𝑃𝑓 to represent the set of

all full paths in 𝑇 .

1.1.2 Induced Subtree. For a tree 𝑇 with vertex set 𝑉 and edge set 𝐸, we say that a tree 𝑇 ′ with
vertex set𝑉 ′ and edge set 𝐸′ is an induced subtree of𝑇 , denoted as𝑇 ′ ⪯ 𝑇 , if and only if (1)𝑉 ′ ⊆ 𝑉 ,
(2) 𝐸′ ⊆ 𝐸, (3) The labeling of 𝑉 ′ is preserved in 𝑇 ′. If 𝑇 ′ ⪯ 𝑇 , we also say that 𝑇 contains 𝑇 ′.
Intuitively, an induced subtree 𝑇 ′ can be obtained by repeatedly removing leaf vertices in 𝑇 , or

possibly the root vertex if it has only one child.

We say two trees𝑇1 and𝑇2 are isomorphic to each other, denoted as𝑇1 = 𝑇2, if there is a one-to-one
mapping from the vertices of 𝑇1 to the vertices of 𝑇2 that preserves vertex labels and adjacency.

Based on the definition, it is easy to see that relation ⪯ is antisymmetric and transitive, i.e., 𝑇1 ⪯ 𝑇2
and 𝑇2 ⪯ 𝑇1 implies 𝑇1 = 𝑇2; 𝑇1 ⪯ 𝑇2 and 𝑇2 ⪯ 𝑇3 implies 𝑇1 ⪯ 𝑇3. We use symbol 𝑇1 ≺ 𝑇2 when
𝑇1 ⪯ 𝑇2 but 𝑇1 ≠ 𝑇2.

1.2 Problem Description
We can generalize the version detection problem in the following description. Assume there is a

detection object labeled tree 𝜙 and a collection of detection samples, represented as a set of labeled

trees Γ = {𝑇1,𝑇2, ...,𝑇𝑛}.
In our practical problem, Γ is a collection of generated pTrees from one library under different

versions, and 𝜙 is the detected library pTree generated during web page runtime. Each vertex in

the pTree will carry extra information – name, value, and type - represented as labels mapping to

vertices.

We say a tree in Γ is the base tree of 𝜙 if 𝜙 is grown from it through adding root and leaf vertices.

For simplicity, we define the predicate 𝐵𝜙 (𝑇): tree𝑇 ∈ Γ is the base tree of𝜙 . Based on our definition,
we can deduce that the base tree has the following two properties.

(1) Necessity: if 𝐵𝜙 (𝑇), then 𝑇 ⪯ 𝜙 ;
(2) Uniqueness: exact one 𝑇 ∈ Γ satisfies 𝐵𝜙 (𝑇).
The first principle introduces the necessary condition of the base tree. If 𝑇 is a base tree of 𝜙 ,

then 𝑇 has to be an induced subtree of 𝜙 . The second principle claims that only one sample tree is

1

HTTPS://ORCID.ORG/0000-0001-6604-6229
HTTPS://ORCID.ORG/0000-0003-4353-1998

Xinyue et al.

the base tree. We want to find the exact base tree that the detection object tree 𝜙 is built from. And

this matches our practical situation – a loaded library should only have one version.

Besides, the detection object tree 𝜙 is restricted by the following property:

Proposition 1.2.1. Assume𝑇𝑘 is the base tree, we have ∀𝑝 ∈ 𝜙.𝑃 , if 𝑝 ∉ 𝑇𝑘 .𝑃 , then 𝑝 ∉
⋃
𝑇 ∈Γ 𝑇 .𝑃𝑓 .

This property indicates that during the 𝜙 growing process, i.e., when more vertices are added to

the base tree to build 𝜙 , the newly created paths will not be the full paths already in sample trees in

Γ. Intuitively, this property ensures that 𝜙 is not a mixture of multiple trees in Γ, otherwise there is
no way to uniquely determine the base tree. This property holds in our real-world detection task,

because multiple versions of a library will be not loaded in the same place.

With these properties, the question is: given Γ and 𝜙 , how to find the 𝑇 ∈ Γ, such that 𝐵𝜙 (𝑇)?

1.3 Simple Solution
First, in order to simplify later descriptions, here we make some additional definitions.

For two labeled trees 𝑇 and 𝑇 ′, if 𝑇 ⪯ 𝑇 ′, we say 𝑇 ′ is a supertree of 𝑇 ; if 𝑇 ≺ 𝑇 ′, we say 𝑇 ′ is a
strict supertree of𝑇 . Given a tree set Γ, we use the symbol SΓ (𝑇) to represent the set of all supertrees
of𝑇 contained in Γ, named supertree set (Typically the tree set Γ will be fixed and thus we will drop

the dependence on Γ in our notation). In other words, S(𝑇) = {𝑇 ′ ∈ Γ | 𝑇 ⪯ 𝑇 ′}. Similarly, We use

the symbol S𝑠𝑡 (𝑇) to represent the set of all strict supertrees of 𝑇 .

We define the equivalence class of a tree 𝑇 with respect to Γ as the set of all trees in Γ that is

isomorphic to𝑇 , denoted as [𝑇], where [𝑇] = {𝑇 ′ ∈ Γ |𝑇 ′ = 𝑇 }. Easy to see that [𝑇] = S(𝑇)−S𝑠𝑡 (𝑇).
We provide an example for these definitions in Fig. 1.

Fig. 1. Assume Γ consists of six trees in the plot, then we have S(𝑇1) = {𝑇1,𝑇2,𝑇3,𝑇6}, S𝑠𝑡 (𝑇1) = {𝑇2,𝑇6},
[𝑇1] = S(𝑇1) − S𝑠𝑡 (𝑇1) = {𝑇1,𝑇3}.

Furthermore, let’s extend the predicate 𝐵𝜙 to 𝐵∗
𝜙
when the predicate variable is a set of trees.

For a tree set 𝑆 , the 𝐵∗
𝜙
(𝑆) is defined as “ ∃𝑇 ∈ 𝑆 such that 𝐵𝜙 (𝑇)”; and the ¬𝐵∗

𝜙
(𝑆) is defined as “

∀𝑇 ∈ 𝑆 , ¬𝐵𝜙 (𝑇)”. Based on this definition, we can reach two corollaries about 𝐵∗
𝜙
.

Corollary 1.3.1. For any two sets 𝑆1, 𝑆2 ⊆ Γ, if 𝐵∗
𝜙
(𝑆2) and ¬𝐵∗𝜙 (𝑆1), then 𝐵

∗
𝜙
(𝑆2 − 𝑆1).

Corollary 1.3.2. For any two sets 𝑆1, 𝑆2 ⊆ Γ that satisfy 𝑆1 ⊆ 𝑆2, if ¬𝐵∗𝜙 (𝑆2), then ¬𝐵
∗
𝜙
(𝑆1).

Coro. 1.3.1 is due to the existence of the base tree – if the base tree does not exist in 𝑆1, then it

must be in 𝑆2 − 𝑆1. Coro. 1.3.2 describes that if the base tree does not exist in a set, then will not be

in its subset as well. Both corollaries can be obtained directly from the definition of 𝐵∗
𝜙
, so the proof

is omitted. With these corollaries in hand, we can reach a vital proposition (Prop. 1.3.1), which

enables us to determine which tree in Γ is the base tree through induced subtree judgment.

Lemma 1.3.1. For an induced subtree 𝑇 of 𝜙 , 𝐵∗
𝜙
(S(𝑇)).

2

PTV: Scalable Version Detection of Web Libraries and its Security Application – Technical Report

Proof. First let’s prove that ¬𝐵∗
𝜙
(Γ − S(𝑇)). Suppose 𝐵∗

𝜙
(Γ − S(𝑇)), which means that there

exists a tree 𝑇 ′ in Γ, such that 𝑇 ⪯̸ 𝑇 ′ and 𝐵𝜙 (𝑇 ′). From 𝑇 ⪯̸ 𝑇 ′, we know that there is a full path 𝑝

of𝑇 not in the path set of𝑇 ′. The lemma gives that𝑇 is an induced subtree of 𝜙 , so 𝑝 ∈ 𝜙.𝑃 . Hence,
𝑝 is a 𝑝𝑎𝑡ℎ satisfies all the conditions in Prop. 1.2.1 but contradicts its conclusion – 𝑝 ∉

⋃
𝑇 ∈Γ 𝑇 .𝑃𝑓 .

As a result, ¬𝐵∗
𝜙
(Γ − S(𝑇)). Then with Coro. 1.3.1, because 𝐵∗

𝜙
(Γ), we have 𝐵∗

𝜙
(S(𝑇)). □

Lemma 1.3.2. For a tree 𝑇 which is not an induced subtree of 𝜙 , ¬𝐵∗
𝜙
(S(𝑇)).

Proof. Suppose 𝐵∗
𝜙
(S(𝑇)), which means that there exists a tree 𝑇 ′ in Γ, such that 𝑇 ⪯ 𝑇 ′

and 𝐵𝜙 (𝑇 ′). According to the necessity, 𝑇 ′ ⪯ 𝜙 , so 𝑇 is an induced subtree of 𝜙 (transitivity).

Contradiction. □

Proposition 1.3.1. For an induced subtree𝑇 of 𝜙 , if ∀𝑇𝑠 ∈ S𝑠𝑡 (𝑇),𝑇𝑠 ⪯̸ 𝜙 , then 𝐵∗𝜙 ([𝑇]); otherwise,
¬𝐵∗

𝜙
([𝑇]).

Proof. If ∀ 𝑇𝑠 ∈ S𝑠𝑡 (𝑇), 𝑇𝑠 ⪯̸ 𝜙 , then ¬𝐵∗ (𝑇𝑠) (Necessity). So ¬𝐵∗𝜙 (S𝑠𝑡 (𝑇)). We know that

𝐵∗
𝜙
(S(𝑇)) because𝑇 ⪯ 𝜙 (Lemma. 1.3.2). Then, based on Coro. 1.3.1, we have 𝐵∗

𝜙
(S(𝑇) −S𝑠𝑡 (𝑇)) ⇒

𝐵∗
𝜙
([𝑇]).
Otherwise, if there exits a tree 𝑇𝑠 in S𝑠𝑡 (𝑇), such that 𝑇𝑠 ⪯ 𝜙 . Then based on Lemma. 1.3.1, we

know 𝐵∗
𝜙
(S(𝑇𝑠)). So ¬𝐵∗𝜙 (Γ − S(𝑇𝑠)). Consider that 𝑇 ≺ 𝑇𝑠 , so [𝑇] ⊆ Γ − S(𝑇𝑠), thus ¬𝐵∗𝜙 ([𝑇]). □

Prop. 1.3.1 shows that we can determine whether the base tree exists in 𝑇 ’s equivalence class by

checking𝑇 ⪯ 𝜙 and all its strict supertrees’𝑇𝑠 ⪯ 𝜙 . In𝑇 ’s equivalence class, each tree is isomorphic

to the other, so there is no method to tell who is the base tree. Ensuring the base tree is in a specific

equivalence class is a satisfactory result for our problem.

Informally, the algorithm to find the base tree in Γ can be described as follows: iterate all trees

in Γ, for each tree 𝑇 ∈ Γ, check whether 𝑇 ⪯ 𝜙 and whether every strict supertree of it satisfies

𝑇𝑠 ⪯ 𝜙 . Combined with Prop. 1.3.1, the result can be 𝐵∗
𝜙
([𝑇]) or ¬𝐵∗

𝜙
([𝑇]). If the former is the case,

then the algorithm terminates and the output is [𝑇]. This algorithm ensures that the equivalence

class in which the base tree is located will be found.

1.4 Unique Subtree Mining
Although we have given a deterministic algorithm to find the base tree (informally), in our practical

application scenarios, the sample trees (trees in Γ) are usually large and numerous. If the algorithm

in the previous section is used for runtime detection, the time and space costs are unaffordable. As

a result, in this section, we propose an algorithm to minify sample trees’ size by unique subtree

mining and ensure that the previous algorithm is still valid.

Algo. 1 shows the overall algorithm to reduce the size of sample trees. The input to the algorithm

is the sample tree set Γ. For each 𝑇 ∈ Γ, the output is its supertree set S(𝑇) and a unique subtree

𝑇𝑚 . We envision that 𝑇𝑚 is a tree with a smaller size than 𝑇 but the supertree set does not change.

Namely, S(𝑇𝑚) = S(𝑇). Note that the 𝑇 in Prop. 1.3.1 is not required to be a member of the set Γ;
this proposition applies whenever 𝑇𝑚 ⪯ 𝜙 , so we can use 𝑇𝑚 to replace the original 𝑇 during the

runtime detection. If S(𝑇𝑚) = S(𝑇), then 𝑇𝑚 must be an induced subtree of 𝑇 , otherwise 𝑇 ∈ S(𝑇)
while 𝑇 ∉ S(𝑇𝑚). Therefore, our algorithm generates the specific 𝑇𝑚 for each 𝑇 ∈ Γ by using a

subset of the tree paths to reconstruct an induced subtree that satisfies S(𝑇𝑚) = S(𝑇).
For each sample tree, Algo. 1 first calculates the path recording, whose details are presented in

Algo. 2. In Algo. 2 line 1, we initialize the recording collection Ω as an empty set. For each full path

in tree 𝑇 , we use a recording set 𝜔 to record the path’s occurrence in other trees in Γ (Algo. 2 line

3). If the full path occurs in the path set of another tree 𝑇𝑖 , the tree’s index 𝑖 will be recorded in 𝜔 .

3

Xinyue et al.

Algorithm 1 Unique Subtree Mining

Input: the sample tree set: Γ
Output: S(𝑇) and the unique subtree 𝑇𝑚 for each 𝑇 ∈ Γ
1: for each 𝑇 ∈ Γ do
2: Ω ← 𝑃𝑎𝑡ℎ𝑅𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 (𝑇, Γ)
3: S(𝑇) ← ⋂

𝜔∈Ω 𝜔

4: Let Ω := {Γ − 𝜔 | 𝜔 ∈ Ω}
5: 𝐼 ← 𝑀𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑆𝑒𝑡 (Ω, Γ − S(𝑇))
6: 𝑇𝑚 ← 𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒𝐹𝑟𝑜𝑚𝑃𝑎𝑡ℎ (𝑇, 𝐼)
7: end for

Here we choose the full path instead of the normal path because we want to make sure the size of

the generated 𝑇𝑚 is large enough to prevent false positives during detection. In line 5, we combine

all the recording set 𝜔 of each full path together as a recording collection Ω.

Algorithm 2 PathRecording

Input: the target set: Γ, a tree: 𝑇 ∈ Γ
Output: a coloring collection Ω
1: Initialization: Ω ← ∅
2: for each full path 𝑓 in 𝑇 .𝑃𝑓 do
3: 𝑓 ’s coloring set 𝜔 := {𝑇𝑖 ∈ Γ | 𝑓 ∈ 𝑇𝑖 .𝑃}
4: Ω ← Ω ∪ {𝜔}
5: end for

After getting the recording collection Ω, in Algo. 1 line 3, the value of S(𝑇) is obtained by

intersecting all elements in the Ω.

Proposition 1.4.1.

⋂
Ω = S(𝑇).

Proof. If a tree 𝑇 ′ ∈ Γ is in

⋂
Ω, then all the full paths of 𝑇 is contained in the path set of 𝑇 ′, so

𝑇 ⪯ 𝑇 ′; otherwise, at least one full path of𝑇 is not in the path set of𝑇 ′, so𝑇 ⪯̸ 𝑇 ′. As a result,
⋂

Ω
equals the set of all supertrees of 𝑇 . □

The unique subtree𝑇𝑚 is generated from a subset of full paths of𝑇 . To ensure S(𝑇𝑚) = S(𝑇), we
need to find the smallest subset of Ω, such that the intersection of all its elements still equals S(𝑇).
If we complement both sides of the equation in Prop. 1.4.1, we can get

⋃
𝜔∈Ω (Γ −𝜔) = Γ − S(𝑇) by

De Morgan’s laws. In this form, our question is equivalent to a well-known NP-complete problem –

the set cover problem – which is described as follows.

Given a set of elements {1, 2, . . . , 𝑛} (called the universe) and a collection 𝑆 of𝑚 sets

whose union equals the universe, the set cover problem is to identify the smallest

sub-collection of 𝑆 whose union equals the universe.

In our algorithm, the collection 𝑆 in the description of the set cover problem is the inversed

recording collection Ω defined in Algo. 1 line 4; and the universe𝑈 is Γ − S(𝑇). In line 5, we invoke

Algo. 3 to calculate the minimum cover subset of Ω. This algorithm will return an index set 𝐼 , which

contains the index of all elements that constitute the minimum cover subset. Using these indexes,

in line 6, we construct the unique subtree 𝑇𝑚 by invoking Algo. 4.

Algo. 3 is a famous greedy algorithm to solve the set cover problem within approximate polyno-

mial time. At each stage, it chooses the set with the largest number of uncovered elements. This

4

PTV: Scalable Version Detection of Web Libraries and its Security Application – Technical Report

Algorithm 3MinCoverSet

Input: a set collection: 𝑆 = {𝜔1, 𝜔2, ..., 𝜔𝑛}, the universe𝑈
Output: a set 𝐼 ⊆ {1, 2, ..., 𝑛}, such that

⋃
𝑖∈𝐼 𝜔𝑖 = 𝑈

1: Initialization: 𝐼 ← ∅, 𝐶 ← ∅
2: while 𝐶 ≠ 𝑈 do
3: Find the 𝑖 ∈ {1, 2, ..., 𝑛} − 𝐼 , such that |𝐶 ∪ 𝜔𝑖 | is largest
4: 𝐼 ← 𝐼 ∪ {𝑖}
5: 𝐶 ← 𝐶 ∪ 𝜔𝑖
6: end while

algorithm achieves an approximation ratio of 𝐻 (𝑠), where 𝑠 is the size of the set to be covered. In

other words, it finds a set covering that may be 𝐻 (𝑛) times as large as the minimum one, where

𝐻 (𝑛) is the n-th harmonic number:

𝐻 (𝑛) =
𝑛∑︁
𝑘=1

1

𝑘
≤ ln𝑛 + 1 (1)

Algorithm 4 BuildTreeFromPath

Input: a tree 𝑇 with a full path set 𝑇 .𝑃𝑓 = {𝑝1, 𝑝2, ..., 𝑝𝑘 }, an index set 𝐼 ⊆ {1, 2, ..., 𝑘}
Output: the unique subtree 𝑇𝑚
1: Initialization: 𝑇𝑚 ← ∅
2: for each 𝑖 ∈ 𝐼 do
3: Add path 𝑝𝑖 to the tree 𝑇𝑚
4: end for

Algo. 4 shows the detail of 𝑇𝑚 constructing. The input to the algorithm is a tree 𝑇 and an index

set 𝐼 . We select the path whose index appears in the index set 𝐼 to construct the tree.

Lastly, let’s use the trees in Fig. 1 to illustrate the whole unique subtree mining process. Here

Γ = {𝑇1,𝑇2,𝑇3,𝑇4,𝑇5,𝑇6}. For 𝑇1, firstly, we calculate the recording of each full path of it in Algo. 2.

There are three full paths and the corresponding recording sets 𝜔 of 𝑇1 shown in Table 1. Then

we can get the value of S(𝑇1) by union all the 𝜔 . And the inversed recording collection Ω =

{{𝑇5}, {𝑇5}, {𝑇4}}. The Algo. 3 helps us to find the minimum sets from collection Ω whose union

equals Γ − S(𝑇1) = {𝑇4,𝑇5}. And we can see that the combination of path (1, 2, 3) and (1, 2, 5) can
meet the requirement. As a result, the unique subtree (𝑇1)𝑚 consists of these two paths. Similarly,

we can get other unique subtrees. All unique subtrees are shown in Fig. 2.

Table 1. Unique subtree mining algorithm calculation result on 𝑇1 in Fig. 1.

full paths 𝜔 S(𝑇1) Ω
(1, 2, 3) {𝑇1,𝑇2,𝑇3,𝑇4,𝑇6}

{𝑇1,𝑇2,𝑇3,𝑇6}
{{𝑇5}, {𝑇5},
{𝑇4}}

(1, 2, 4) {𝑇1,𝑇2,𝑇3,𝑇4,𝑇6}
(1, 2, 5) {𝑇1,𝑇2,𝑇3,𝑇5,𝑇6}

5

Xinyue et al.

Fig. 2. The unique subtrees of trees in Fig. 1.

1.5 Strict Supertree Set Minify
In Prop. 1.3.1 we need to verify all strict supertrees of 𝑇 to determine whether the base tree is

located in [𝑇]; however, it is not necessary to iterate through the whole S𝑠𝑡 (𝑇). In Sec. 1.6, we will

prove that the trees in the minified strict supertree set S𝑚 (𝑇), which is a subset of S𝑠𝑡 (𝑇), are all
we need to check. Algo. 5 shows the process of generating [𝑇] and S𝑚 (𝑇) for each 𝑇 ∈ Γ.

Algorithm 5 Strict Supertree Set Minify

Input: a tree 𝑇 with its supertree set S(𝑇)
Output: [𝑇] and the minified strict supertree set S𝑚 (𝑇)
1: Initialization: [𝑇] ← ∅, S𝑚 (𝑇) ← ∅
2: for each supertree 𝑇 ′ ∈ S(𝑇) do
3: if 𝑇 ∈ S(𝑇 ′) then
4: [𝑇] ← [𝑇] ∪ {𝑇 ′}
5: end if
6: end for
7: S𝑠𝑡 (𝑇) := S(𝑇) − [𝑇]
8: while S𝑠𝑡 (𝑇) ≠ ∅ do
9: Find 𝐾 ∈ S𝑠𝑡 (𝑇), such that |S(𝐾) | is the largest
10: S𝑠𝑡 (𝑇) ← S𝑠𝑡 (𝑇) − S(𝐾)
11: S𝑚 (𝑇) ← S𝑚 (𝑇) ∪ {𝐾}
12: end while

In Algo. 5 line 1 - 6, we calculate [𝑇]. The idea is simple: for a supertree of 𝑇 , if 𝑇 ∈ S(𝑇 ′)
and 𝑇 ′ ∈ S(𝑇), then 𝑇 = 𝑇 ′. Next, we get the value of S𝑠𝑡 (𝑇) in line 7 by removing isomorphic

supertrees from S(𝑇). From line 8, we start to generate the minified strict supertree set S𝑚 (𝑇). The
algorithm always selects the element of S𝑠𝑡 (𝑇) that has the largest number of supertrees. This

greedy algorithm ensures that S𝑚 (𝑇) holds an important proposition – Prop. 1.5.1, which can help

S𝑚 (𝑇) to replace S(𝑇) in runtime detection as we will discuss in Sec. 1.6.

Lemma 1.5.1. If 𝑇 ⪯ 𝑇 ′, then S(𝑇 ′) ⊆ S(𝑇).

Proof. ∀𝑡 ∈ S(𝑇 ′), based on the definition of the supertree set, we know 𝑇 ′ ⪯ 𝑡 . According to
transitiveness, 𝑇 ⪯ 𝑇 ′ ⪯ 𝑡 , so 𝑡 ∈ S(𝑇). Therefore, S(𝑇 ′) ⊆ S(𝑇). □

Proposition 1.5.1. S𝑚 (𝑇) is the smallest subset of S𝑠𝑡 (𝑇) that satisfies
⋃
𝐾∈S𝑚 (𝑇) S(𝐾) = S𝑠𝑡 (𝑇).

Proof. We prove this using the greedy algorithm proof scheme.

(1) (Greedy Choice Property) Our greedy choice is 𝐾 whose supertree set size is the largest in

S𝑠𝑡 (𝑇). Suppose there is an optimal solution O that does not contain 𝐾 . Because 𝐾 ∈ S𝑠𝑡 (𝑇), there
exists an 𝐾 ′ in solution O such that 𝐾 ∈ S(𝐾 ′); otherwise it can’t satisfy ⋃

𝐾∈S𝑚 (𝑇) S(𝐾) = S𝑠𝑡 (𝑇).

6

PTV: Scalable Version Detection of Web Libraries and its Security Application – Technical Report

So, 𝐾 ′ ⪯ 𝐾 . Based on Lemma. 1.5.1, we know S(𝐾) ⊆ S(𝐾 ′). In our greedy choice, |S(𝐾) | is the
largest, so S(𝐾) = S(𝐾 ′). Hence, we can replace 𝐾 ′ by 𝐾 in O and still get an optimal solution.

(2) (Optimal Substructure Property) Let O be an optimal solution containing 𝐾 . Consider the

subproblem S′𝑠𝑡 (𝑇) = S𝑠𝑡 (𝑇) − S(𝐾). We need to prove O contains the optimal solution for S′𝑠𝑡 (𝑇).
Suppose O − {𝐾} is not an optimal solution for S′𝑠𝑡 (𝑇). We denote the optimal solution for S′𝑠𝑡 (𝑇)
by O′. Then |O′ | < |O − {𝐾}| = |O| − 1. Given that (⋃

𝐾∈O′ S(𝐾)) ∪ S(𝐾) = S𝑠𝑡 (𝑇), O′ ∪ {𝐾} is a
solution with a smaller size than O. Hence, O is not an optimal solution. Contradiction. □

Take the trees in Fig. 1 as an example. The value of S𝑚 (𝑇1) should be {𝑇2}, because S(𝑇2) =
{𝑇2,𝑇6} = S𝑠𝑡 (𝑇1). Similarly, we have S𝑚 (𝑇2) = {𝑇6}, S𝑚 (𝑇3) = {𝑇2}, S𝑚 (𝑇4) = {𝑇1}, S𝑚 (𝑇5) = {𝑇6},
and S𝑚 (𝑇6) = ∅.

1.6 Runtime Detection
So far, for each 𝑇 ∈ Γ, we get its unique subtree 𝑇𝑚 in Sec. 1.4 and its minified strict supertree set

S𝑚 (𝑇) in Sec. 1.5. Now, we can rewrite Prop. 1.3.1 in the following new version.

Proposition 1.6.1. If 𝑇𝑚 ⪯ 𝜙 and ∀𝐾 ∈ S𝑚 (𝑇), 𝐾𝑚 ⪯̸ 𝜙 , then 𝐵∗𝜙 ([𝑇]); otherwise, ¬𝐵
∗
𝜙
([𝑇]).

Proof. We divide the condition into three cases.

(1) 𝑇𝑚 ⪯̸ 𝜙 .
From Lemma. 1.3.2, we have ¬𝐵∗

𝜙
(S(𝑇𝑚)). Due to [𝑇] ⊆ S(𝑇) = S(𝑇𝑚), we have ¬𝐵∗𝜙 ([𝑇]).

(2) 𝑇𝑚 ⪯ 𝜙 , and ∃ 𝐾 ∈ S𝑚 (𝑇), such that 𝐾𝑚 ⪯ 𝜙 .
From Lemma. 1.3.1, 𝐵∗

𝜙
(S(𝐾𝑚)). Because S(𝐾𝑚) = S(𝐾), we have 𝐵∗𝜙 (S(𝐾)), so ¬𝐵

∗
𝜙
(Γ − S(𝐾)).

From the definition of S𝑚 (𝑇), we know 𝑇 ≺ 𝐾 , so [𝑇] ⊆ Γ − S(𝐾). Therefore, ¬𝐵∗
𝜙
([𝑇]).

(3) 𝑇𝑚 ⪯ 𝜙 , and ∀𝐾 ∈ S𝑚 (𝑇), 𝐾𝑚 ⪯̸ 𝜙 .
Based on Lemma. 1.3.2, we can get ∀𝐾 ∈ S𝑚 (𝑇), ¬𝐵∗𝜙 (S(𝐾𝑚)), then ¬𝐵

∗
𝜙
(S(𝐾)). So we have

¬𝐵∗
𝜙
(⋃

𝐾∈S𝑚 (𝑇) S(𝐾)), and this can be converted to ¬𝐵∗
𝜙
(S𝑠𝑡 (𝑇)) by Prop. 1.5.1. Furthermore, be-

cause 𝑇𝑚 ⪯ 𝜙 , by Lemma. 1.3.1, we have 𝐵∗
𝜙
(S(𝑇𝑚)), thus 𝐵∗𝜙 (S(𝑇)). Consequently, here comes

𝐵∗
𝜙
(S(𝑇) − S𝑠𝑡 (𝑇)) ⇒ 𝐵∗

𝜙
([𝑇]). □

Based on Prop. 1.6.1, given Γ and 𝜙 , we propose an algorithm to detect the base tree of 𝜙 in Γ,
shown in Algo. 6. Let’s say the original sample tree set is Γ = {𝑇1,𝑇2, ...,𝑇𝑛}. Then the first input to

the algorithm is a unique subtree set Γ𝑚 = {(𝑇1)𝑚, (𝑇2)𝑚, ..., (𝑇𝑛)𝑚}. We represent the indexes of

the trees in Γ𝑚 as 𝐼 = {1, 2, ..., 𝑛}. Then, we define two mappings 𝑓𝑠 and 𝑓𝑒 : 𝐼 → P(𝐼), where for an
index 𝑘 ∈ 𝐼 , 𝑓𝑠 (𝑘) maps to the set of all index of trees in S𝑚 (𝑇𝑘), and 𝑓𝑒 (𝑘) maps to the set of all

index of trees in [𝑇𝑘]. Namely, 𝑓𝑠 (𝑘) = {𝑖 | 𝑇𝑖 ∈ S𝑚 (𝑇𝑘)}, and 𝑓𝑒 (𝑘) = {𝑖 | 𝑇𝑖 ∈ [𝑇𝑘]}. The last input
to the algorithm is the detect object tree 𝜙 .

Algo. 6 guarantees to return the equivalence class of the base tree in Γ – it will traverse all

equivalence classes to find the one that meets the condition in Prop. 1.6.1. Note that this algorithm

does not require the original sample trees Γ as input, resulting in faster speed and less space

occupied during the detection runtime.

1.7 Algorithm Complexity
It is obvious that most part of the algorithm is in trivial linear time complexity. In this section,

we only discuss two non-trivial parts – path recording (Algo. 2) and minimum cover set (Algo. 3).

Suppose there are 𝑛 trees in Γ, and 𝑁 vertices in Γ.

1.7.1 Path recording. To get path recording, Algo. 2 iterates through all full paths in the tree

and check whether these full paths appear in the path set of other trees in Γ. In our application,

7

Xinyue et al.

Algorithm 6 Runtime Detection

Input: the unique subtrees Γ𝑚 = {(𝑇1)𝑚, (𝑇2)𝑚, ..., (𝑇𝑛)𝑚}, two mappings 𝑓𝑠 , 𝑓𝑒 , and the detect

object tree 𝜙

Output: the indexes of possible base trees

1: for each 𝑖 ∈ [𝑛] do
2: if (𝑇𝑖)𝑚 ⪯ 𝜙 then
3: for each 𝑗 ∈ 𝑓𝑠 (𝑖) do
4: if (𝑇𝑗)𝑚 ⪯ 𝜙 then
5: go to 9

6: end if
7: end for
8: return 𝑓𝑒 (𝑖)
9: end if
10: end for

all the tree in Γ share a same root “window”, and the “window” vertex will not appear at other

places except root. Hence, given a full path 𝑓 and a tree 𝑇 , we only need at most |𝑓 | times vertex

comparisons to find out whether 𝑓 ∈ 𝑇 .𝑃 , where |𝑓 | represents the number of vertices on the path

𝑓 . Given a tree 𝑇1 ∈ Γ, the time to calculate the path recording of 𝑇1 is:

𝑛 ·
∑︁

𝑓 ∈𝑇1 .𝑃𝑓

|𝑓 | (2)

Observe that the number of full paths in a tree is no more than its vertex number, and the vertex

number of any full path is no more than tree’s vertex number either. We have:

𝑛 ·
∑︁

𝑓 ∈𝑇1 .𝑃𝑓

|𝑓 | ≤ 𝑛 · |𝑇1.𝑃𝑓 | · |𝑇1 .𝑉 | ≤ 𝑛 · |𝑇1.𝑉 |2 (3)

Hence, the time to calculate the path recording for all trees in Γ is:

𝑇 (path recording) = 𝑛 ·
∑︁
𝑓 ∈𝑇1 .𝐹

|𝑓 | + 𝑛 ·
∑︁
𝑓 ∈𝑇2 .𝐹

|𝑓 | + · · · + 𝑛 ·
∑︁
𝑓 ∈𝑇𝑛 .𝐹

|𝑓 |

≤ 𝑛 ·
∑︁
𝑇 ∈Γ
|𝑇 .𝑉 |2 ≤ 𝑛 · (

∑︁
𝑇 ∈Γ
|𝑇 .𝑉 |)2 = 𝑛 · 𝑁 2

(4)

So the time complexity of path recording algorithm is 𝑂 (𝑛 · 𝑁 2).

1.7.2 Minimum Cover Set. In Algo. 2, the size of set collection 𝑆 equals the number of full paths.

In each iteration, algorithm traverse all elements in 𝑆 , and there are at most |𝑆 | iterations. So, for a
tree 𝑇 , it requires at most |𝑆 |2 operations to find the minimum cover set. The time to calculate the

minimum cover set for all trees in Γ is:

𝑇 (Minimum Cover Set) =
∑︁
𝑇 ∈Γ
|𝑇 .𝑃𝑓 |2 ≤

∑︁
𝑇 ∈Γ
|𝑇 .𝑉 |2 ≤ (

∑︁
𝑇 ∈Γ
|𝑇 .𝑉 |)2 = 𝑁 2

(5)

So the time complexity of minimum cover set algorithm is 𝑂 (𝑁 2).
In conclusion, the overall tree processing algorithm has 𝑂 (𝑛 · 𝑁 2) worst-case time complexity,

where 𝑛 is the number of tree, and 𝑁 is the total number of vertex of all trees.

8

	Abstract
	1 Algorithm Design
	1.1 Basic Definition
	1.2 Problem Description
	1.3 Simple Solution
	1.4 Unique Subtree Mining
	1.5 Strict Supertree Set Minify
	1.6 Runtime Detection
	1.7 Algorithm Complexity

