PTV: Scalable Version Detection of Web Libraries and its
Security Application — Technical Report

XINYUE LIU and LUKASZ ZIAREK, University at Buffalo, USA

This document provides proofs and time complexity analysis for algorithms introduced in the paper PTV:
Scalable Version Detection of Web Libraries and its Security Application.

1 ALGORITHM DESIGN

In this section we provide the core algorithms and their complexity analysis that underpin our
implementation of pTree-based JavaScript library detection.

1.1 Basic Definition

1.1.1 Labeled Tree. We denote a labeled tree as T = (V, E, 3, L), consisting of a vertex set V, an
edge set E, an alphabet 3. for vertex labels, and a labeling function L : V. — 3. The size of T is the
number of vertices in the tree.

A path is a sequence of vertices p = (v1, 0z, ...,0,) € V X V X ... X V such that v; is adjacent to
;41 for 1 < i < n. When the path’s first vertex is root and the last vertex is a leaf, we call it a full
path. For a tree T, we use T.P to represent the set of all paths in T, and T.Py to represent the set of
all full paths in T.

1.1.2 Induced Subtree. For a tree T with vertex set V and edge set E, we say that a tree T’ with
vertex set V' and edge set E’ is an induced subtree of T, denoted as T’ < T, if and only if (1) V' C V,
(2) E’ € E, (3) The labeling of V' is preserved in T’. If T’ < T, we also say that T contains T’.
Intuitively, an induced subtree T” can be obtained by repeatedly removing leaf vertices in T, or
possibly the root vertex if it has only one child.

We say two trees T; and T, are isomorphic to each other, denoted as Ty = T, if there is a one-to-one
mapping from the vertices of T; to the vertices of T, that preserves vertex labels and adjacency.
Based on the definition, it is easy to see that relation < is antisymmetric and transitive, i.e., Ty < T,
and T; < Ty implies Ty = T5; Ty < T> and T; < T; implies T; < T3. We use symbol T; < T, when
T1 < Tz but T1 * Tz.

1.2 Problem Description

We can generalize the version detection problem in the following description. Assume there is a
detection object labeled tree ¢ and a collection of detection samples, represented as a set of labeled
treesT = {T}, 5, ..., T, }.

In our practical problem, T' is a collection of generated pTrees from one library under different
versions, and ¢ is the detected library pTree generated during web page runtime. Each vertex in
the pTree will carry extra information — name, value, and type - represented as labels mapping to
vertices.

We say a tree in T' is the base tree of ¢ if ¢ is grown from it through adding root and leaf vertices.
For simplicity, we define the predicate By (T): tree T € I is the base tree of ¢. Based on our definition,
we can deduce that the base tree has the following two properties.

(1) Necessity: if B4(T), then T < ¢;
(2) Uniqueness: exact one T € T satisfies By (T).

The first principle introduces the necessary condition of the base tree. If T is a base tree of ¢,
then T has to be an induced subtree of ¢. The second principle claims that only one sample tree is

HTTPS://ORCID.ORG/0000-0001-6604-6229
HTTPS://ORCID.ORG/0000-0003-4353-1998

Xinyue et al.

the base tree. We want to find the exact base tree that the detection object tree ¢ is built from. And
this matches our practical situation — a loaded library should only have one version.
Besides, the detection object tree ¢ is restricted by the following property:

PROPOSITION 1.2.1. Assume Ty is the base tree, we have Vp € ¢.P, if p & Tx..P, then p ¢ Urer T.Py.

This property indicates that during the ¢ growing process, i.e., when more vertices are added to
the base tree to build ¢, the newly created paths will not be the full paths already in sample trees in
I'. Intuitively, this property ensures that ¢ is not a mixture of multiple trees in I', otherwise there is
no way to uniquely determine the base tree. This property holds in our real-world detection task,
because multiple versions of a library will be not loaded in the same place.

With these properties, the question is: given I' and ¢, how to find the T € T, such that B¢ (T)?

1.3 Simple Solution

First, in order to simplify later descriptions, here we make some additional definitions.

For two labeled trees T and T', if T < T’, we say T’ is a supertree of T; if T < T’, we say T” is a
strict supertree of T. Given a tree set I, we use the symbol Sp(T) to represent the set of all supertrees
of T contained in I, named supertree set (Typically the tree set I' will be fixed and thus we will drop
the dependence on T’ in our notation). In other words, S(T) = {T” € I' | T < T"}. Similarly, We use
the symbol S, (T) to represent the set of all strict supertrees of T.

We define the equivalence class of a tree T with respect to I as the set of all trees in I' that is
isomorphic to T, denoted as [T], where [T] = {T’ € T'|T’ = T}. Easy to see that [T] = S(T)—Ss(T).
We provide an example for these definitions in Fig. 1.

© ©
@ @ @ @ 0 0
5 5 DO QB
FOB FOB OB O 6 FOv
Tl T2 T3 T4 TS T6

Fig. 1. Assume I consists of six trees in the plot, then we have S(T7) = {11, T2, T3, Ts }, S5t (T1) = {2, Tg },
[T1] = S(T1) - Ss¢(T1) = {T1, T3}

%

Furthermore, let’s extend the predicate By to B 7 when the predicate variable is a set of trees.
For a tree set S, the B; (S) is defined as “ 3T € S such that By (T)”; and the —|B;; (S) is defined as “

%

YT € S, —|B¢(T)”. Based on this definition, we can reach two corollaries about B 5
CoOROLLARY 1.3.1. For any two sets S1,S, C T, ifB;(Sz) and —|B;‘5(51), then B(’;(Sz -S)).
COROLLARY 1.3.2. For any two sets S1, S, C I that satisfy S1 C Sa, if—|B:;S (S3), then ﬂB;(Sl).

Coro. 1.3.1 is due to the existence of the base tree — if the base tree does not exist in Sy, then it
must be in S, — S;. Coro. 1.3.2 describes that if the base tree does not exist in a set, then will not be
in its subset as well. Both corollaries can be obtained directly from the definition of B, so the proof

is omitted. With these corollaries in hand, we can reach a vital proposition (Prop. 1.3.1), which
enables us to determine which tree in T is the base tree through induced subtree judgment.

LEMMA 1.3.1. For an induced subtree T of §, B;(S(T)).

2

PTV: Scalable Version Detection of Web Libraries and its Security Application — Technical Report

Proor. First let’s prove that —uB;(T — S(T)). Suppose B;(T — S(T)), which means that there
exists a tree T’ in T, such that T £ T’ and By (T’). From T £ T’, we know that there is a full path p
of T not in the path set of T’. The lemma gives that T is an induced subtree of ¢, so p € ¢.P. Hence,
p is a path satisfies all the conditions in Prop. 1.2.1 but contradicts its conclusion - p € Urer T.Py.
As a result, ﬂB;(F — S(T)). Then with Coro. 1.3.1, because B;(F), we have B;‘S (S(T)).o

LEMMA 1.3.2. For a tree T which is not an induced subtree of @, ﬂB;(S(T)).

PRrROOF. Suppose BZ)(S(T)), which means that there exists a tree 77 in T, such that T < T’

and By (T’). According to the necessity, T’ < ¢, so T is an induced subtree of ¢ (transitivity).
Contradiction. O

ProPoSITION 1.3.1. For an induced subtree T of ¢, if VIs € S (T), Ts £ ¢, then B;([T]); otherwise,
—.B;‘s([T]).

Proor. If VT; € Sg(T), Ty £ ¢, then —=B*(T;) (Necessity). So ﬂB(’;(Sst(T)). We know that
B;(S(T)) because T < ¢ (Lemma. 1.3.2). Then, based on Coro. 1.3.1, we have B(’; (S(T) - S&(T)) =
By ([T]).

Otherwise, if there exits a tree T in Ss;(T), such that T; < ¢. Then based on Lemma. 1.3.1, we
know B;(S(TS)). So —|B;(T — S(Ty)). Consider that T < Ty, so [T] € T — S(Ty), thus ﬁB;([T]). O

Prop. 1.3.1 shows that we can determine whether the base tree exists in T’s equivalence class by
checking T < ¢ and all its strict supertrees’ Ty < ¢. In T’s equivalence class, each tree is isomorphic
to the other, so there is no method to tell who is the base tree. Ensuring the base tree is in a specific
equivalence class is a satisfactory result for our problem.

Informally, the algorithm to find the base tree in I" can be described as follows: iterate all trees
inT, for each tree T € I', check whether T < ¢ and whether every strict supertree of it satisfies

Ts; < ¢. Combined with Prop. 1.3.1, the result can be B;([T]) or —|B;([T]). If the former is the case,

then the algorithm terminates and the output is [T]. This algorithm ensures that the equivalence
class in which the base tree is located will be found.

1.4 Unique Subtree Mining

Although we have given a deterministic algorithm to find the base tree (informally), in our practical
application scenarios, the sample trees (trees in I') are usually large and numerous. If the algorithm
in the previous section is used for runtime detection, the time and space costs are unaffordable. As
a result, in this section, we propose an algorithm to minify sample trees’ size by unique subtree
mining and ensure that the previous algorithm is still valid.

Algo. 1 shows the overall algorithm to reduce the size of sample trees. The input to the algorithm
is the sample tree set I'. For each T € T, the output is its supertree set S(T) and a unique subtree
Tn- We envision that T,,, is a tree with a smaller size than T but the supertree set does not change.
Namely, S(T,,) = S(T). Note that the T in Prop. 1.3.1 is not required to be a member of the set I';
this proposition applies whenever T,,, < ¢, so we can use Ty, to replace the original T during the
runtime detection. If S(T;,,) = S(T), then T, must be an induced subtree of T, otherwise T € S(T)
while T ¢ S(T,,). Therefore, our algorithm generates the specific T, for each T € T by using a
subset of the tree paths to reconstruct an induced subtree that satisfies S(T,,,) = S(T).

For each sample tree, Algo. 1 first calculates the path recording, whose details are presented in
Algo. 2. In Algo. 2 line 1, we initialize the recording collection Q as an empty set. For each full path
in tree T, we use a recording set w to record the path’s occurrence in other trees in I' (Algo. 2 line
3). If the full path occurs in the path set of another tree T;, the tree’s index i will be recorded in w.

Xinyue et al.

Algorithm 1 Unique Subtree Mining

Input: the sample tree set: T’
Output: S(T) and the unique subtree T, for each T € T
1: foreachT €T do
22 Q « PathRecording (T,T)
32 S(T) «— Nyeq®@
¢ LetQ={T-w|weQ}
5: I« MinCoverSet (Q,T — S(T))
6: T, < BuildTreeFromPath (T,I)
7: end for

Here we choose the full path instead of the normal path because we want to make sure the size of
the generated T,,, is large enough to prevent false positives during detection. In line 5, we combine
all the recording set w of each full path together as a recording collection Q.

Algorithm 2 PathRecording

Input: the targetset:I',atree: T €T
Output: a coloring collection Q
1: Initialization: Q «— @
2: for each full path f in T.Pr do
32 f’scoloring set w := {T; € T | f € T;.P}
4 Qe QuU{w}
5: end for

After getting the recording collection Q, in Algo. 1 line 3, the value of S(T) is obtained by
intersecting all elements in the Q.

ProrosITION 1.4.1. (1 Q = S(T).

Proor. If a tree T € T is in () Q, then all the full paths of T is contained in the path set of T, so
T < T’; otherwise, at least one full path of T is not in the path set of T/, so T £ T’. As a result, (| Q
equals the set of all supertrees of T. O

The unique subtree T, is generated from a subset of full paths of T. To ensure S(T,,) = S(T), we
need to find the smallest subset of Q, such that the intersection of all its elements still equals S(T).
If we complement both sides of the equation in Prop. 1.4.1, we can get | J .o (I' —w) =T = S(T) by
De Morgan’s laws. In this form, our question is equivalent to a well-known NP-complete problem -
the set cover problem — which is described as follows.

Given a set of elements {1, 2,...,n} (called the universe) and a collection S of m sets
whose union equals the universe, the set cover problem is to identify the smallest
sub-collection of S whose union equals the universe.

In our algorithm, the collection S in the description of the set cover problem is the inversed
recording collection Q defined in Algo. 1 line 4; and the universe U is ' — S(T). In line 5, we invoke
Algo. 3 to calculate the minimum cover subset of Q. This algorithm will return an index set I, which
contains the index of all elements that constitute the minimum cover subset. Using these indexes,
in line 6, we construct the unique subtree T, by invoking Algo. 4.

Algo. 3 is a famous greedy algorithm to solve the set cover problem within approximate polyno-
mial time. At each stage, it chooses the set with the largest number of uncovered elements. This

PTV: Scalable Version Detection of Web Libraries and its Security Application — Technical Report

Algorithm 3 MinCoverSet

Input: a set collection: S = {w1, Wy, ..., W, }, the universe U
Output: asetl C {1,2,..,n}, such that {J,;;wi =U

1: Initialization: I «— @, C «— @

2: while C # U do

32 Findthei € {1,2,..,n} — I, such that |C U w;]| is largest

4 Te—TU{}

5: C«—CUuw;

6: end while

algorithm achieves an approximation ratio of H(s), where s is the size of the set to be covered. In
other words, it finds a set covering that may be H(n) times as large as the minimum one, where
H(n) is the n-th harmonic number:

=

H(n) =

IA

Inn+1 (1)

EY

k=1

Algorithm 4 BuildTreeFromPath

Input: atree T with a full path set T.P¢ = {py, ps, ..., px}, an index set I C {1,2,....k}
Output: the unique subtree T,

1: Initialization: T,, «— @

2: foreachi € I do

3. Add path p; to the tree T,

4: end for

Algo. 4 shows the detail of T,, constructing. The input to the algorithm is a tree T and an index
set I. We select the path whose index appears in the index set I to construct the tree.

Lastly, let’s use the trees in Fig. 1 to illustrate the whole unique subtree mining process. Here
I'={T, D, T5, Ty, T5, Ty }. For Ty, firstly, we calculate the recording of each full path of it in Algo. 2.
There are three full paths and the corresponding recording sets w of T; shown in Table 1. Then
we can get the value of S(T;) by union all the w. And the inversed recording collection Q =
{({T5}, {T5}, {T}}. The Algo. 3 helps us to find the minimum sets from collection Q whose union
equals T — S(T7) = {T4, Ts}. And we can see that the combination of path (1, 2,3) and (1,2, 5) can
meet the requirement. As a result, the unique subtree (7T;),, consists of these two paths. Similarly,
we can get other unique subtrees. All unique subtrees are shown in Fig. 2.

Table 1. Unique subtree mining algorithm calculation result on Tj in Fig. 1.

full paths w S(Th) Q
(1,2,3) {0, T, T3, Ty, Tg}
(L2,4) {NTB»4L.T} {11213 T} {{YE%’;;S}’
(1,2,5) {12, 13,15, Ts} !

Xinyue et al.

-0

), @ @ ©
=
)0, © @D ®
(Tl)m (TZ)m (T3)m (T4)m (TS)m (TG)m

Fig. 2. The unique subtrees of trees in Fig. 1.

1.5 Strict Supertree Set Minify

In Prop. 1.3.1 we need to verify all strict supertrees of T to determine whether the base tree is
located in [T]; however, it is not necessary to iterate through the whole Sg,;(T). In Sec. 1.6, we will
prove that the trees in the minified strict supertree set S,,(T), which is a subset of S;(T), are all
we need to check. Algo. 5 shows the process of generating [T] and S,,(T) for each T € T.

Algorithm 5 Strict Supertree Set Minify

Input: atree T with its supertree set S(T)
Output: [T] and the minified strict supertree set S,,(T)
1: Initialization: [T] « @, Sy (T) « @
2: for each supertree T’ € S(T) do
32 if T € S(T’) then
4 [T] « [T]U{T"}
5. endif
6: end for
7: S5t (T) = S(T) — [T]
8: while Sy (T) # @ do
9: Find K € Sg(T), such that |S(K)| is the largest
10: Sst(T) « Sst(T) - S(K)
11: Sp(T) « Sp(T) U{K}
12: end while

In Algo. 5 line 1 - 6, we calculate [T]. The idea is simple: for a supertree of T, if T € S(T”)
and T’ € S(T), then T = T’. Next, we get the value of S (T) in line 7 by removing isomorphic
supertrees from S(T). From line 8, we start to generate the minified strict supertree set S,,,(T). The
algorithm always selects the element of S (T) that has the largest number of supertrees. This
greedy algorithm ensures that S,,(T) holds an important proposition — Prop. 1.5.1, which can help
Sm(T) to replace S(T) in runtime detection as we will discuss in Sec. 1.6.

LEmMA 1.5.1. If T < T’, then S(T") € S(T).

Proor. Vit € S(T”), based on the definition of the supertree set, we know T’ < t. According to
transitiveness, T < T” < t,so t € S(T). Therefore, S(T’) C S(T). O

ProrosiTION 1.5.1. S,,,(T) is the smallest subset of Sg;(T) that satisfies UKesm(T) S(K) = Ss(T).

Proor. We prove this using the greedy algorithm proof scheme.

(1) (Greedy Choice Property) Our greedy choice is K whose supertree set size is the largest in
Ss¢(T). Suppose there is an optimal solution O that does not contain K. Because K € S;;(T), there
exists an K’ in solution O such that K € S(K’); otherwise it can’t satisfy UKesm(T) S(K) = S&:(T).

6

PTV: Scalable Version Detection of Web Libraries and its Security Application — Technical Report

So, K’ < K. Based on Lemma. 1.5.1, we know S(K) € S(K’). In our greedy choice, |S(K)| is the
largest, so S(K) = S(K’). Hence, we can replace K’ by K in O and still get an optimal solution.
(2) (Optimal Substructure Property) Let O be an optimal solution containing K. Consider the
subproblem S, (T) = S5 (T) — S(K). We need to prove O contains the optimal solution for S, (T).
Suppose O — {K?} is not an optimal solution for S, (T). We denote the optimal solution for S, (T)
by O’. Then |O’| < |0 - {K}| = |O| — 1. Given that (Ug. o S(K)) US(K) = S5(T), 0" U{K} isa
solution with a smaller size than O. Hence, O is not an optimal solution. Contradiction. O

Take the trees in Fig. 1 as an example. The value of S,,(T7) should be {T;}, because S(T;) =
{T5, Ts} = Ss;(Ty). Similarly, we have S,,(Tz) = {Ts}, Sm(T3) = {2}, S (Ty) = {T1}, S (Ts) = {Ts},
and S,,(T) = @.

1.6 Runtime Detection

So far, for each T € T, we get its unique subtree T,, in Sec. 1.4 and its minified strict supertree set
S (T) in Sec. 1.5. Now, we can rewrite Prop. 1.3.1 in the following new version.

ProrosiTION 1.6.1. If T,;, < ¢ and VK € S,(T), K,y £ ¢, then B:;([T]); otherwise, ﬂB;([T]).

Proor. We divide the condition into three cases.

(D) Tn £ ¢

From Lemma. 1.3.2, we have ﬁB;(S(Tm)). Due to [T] € S(T) = S(T;,), we have —|B;;([T]).

(2) Ty, £ ¢,and 3K € S,,(T), such that K,,, < ¢.

From Lemma. 1.3.1, B;(S(Km)) Because S(K,,) = S(K), we have B;(S(K)), so —-B:;5 (T = S(K)).
From the definition of S,,(T), we know T < K, so [T] C T — S(K). Therefore, ﬂB;([T]).

(3) T < ¢,and VK € S, (T), K, £ 9.

Based on Lemma. 1.3.2, we can get VK € S,,(T), ﬁB;(S(Km)), then —-B;(S(K)). So we have
ﬁB;(UKGSm(T) S(K)), and this can be converted to ﬂB;(Sst(T)) by Prop. 1.5.1. Furthermore, be-
cause T, < ¢, by Lemma. 1.3.1, we have B; (S(Ty)), thus B;(S(T)). Consequently, here comes
By(S(T) ~ Sa(T) = By ([T). 0

Based on Prop. 1.6.1, given I' and ¢, we propose an algorithm to detect the base tree of ¢ in T,
shown in Algo. 6. Let’s say the original sample tree setis I = {13, T, ..., T,, }. Then the first input to
the algorithm is a unique subtree set I}, = {(T1)m, (T2)m, ---» (T)m}. We represent the indexes of
the trees in I, as I = {1,2, ..., n}. Then, we define two mappings f; and f; : I — P (I), where for an
index k € I, f;(k) maps to the set of all index of trees in S,,(T}), and f, (k) maps to the set of all
index of trees in [Ti]. Namely, fs(k) = {i | T; € S;»(Tx)}, and fo (k) = {i | T; € [Ti]}. The last input
to the algorithm is the detect object tree ¢.

Algo. 6 guarantees to return the equivalence class of the base tree in I' — it will traverse all
equivalence classes to find the one that meets the condition in Prop. 1.6.1. Note that this algorithm
does not require the original sample trees I' as input, resulting in faster speed and less space
occupied during the detection runtime.

1.7 Algorithm Complexity

It is obvious that most part of the algorithm is in trivial linear time complexity. In this section,
we only discuss two non-trivial parts — path recording (Algo. 2) and minimum cover set (Algo. 3).
Suppose there are n trees in I', and N vertices in I'.

1.7.1 Path recording. To get path recording, Algo. 2 iterates through all full paths in the tree
and check whether these full paths appear in the path set of other trees in I'. In our application,

7

Xinyue et al.

Algorithm 6 Runtime Detection

Input: the unique subtrees I, = {(T1)m, (T2)ms - (Tn)m}, two mappings f;, fo, and the detect
object tree ¢
Output: the indexes of possible base trees
1: for eachi € [n] do
2. if (T))m < ¢ then
for each j € f;(i) do
if (Tj))m < ¢ then
goto9
end if
end for
return f,(i)
9: endif
10: end for

N A L

all the tree in I' share a same root “window”, and the “window” vertex will not appear at other
places except root. Hence, given a full path f and a tree T, we only need at most |f| times vertex
comparisons to find out whether f € T.P, where |f| represents the number of vertices on the path
f. Given a tree T; € T, the time to calculate the path recording of T; is:

ne > Ifl)

fET] P f
Observe that the number of full paths in a tree is no more than its vertex number, and the vertex
number of any full path is no more than tree’s vertex number either. We have:

ne > Ifl<nc TPl TV < e TV (3)
fGTl.Pf
Hence, the time to calculate the path recording for all trees in T' is:

T (path recording) = n - Z If]+n- Z Ifl+---+n- Z Ifl

feT.F feT,.F feT,.F

<n- Z TV <n- (Z IT.V])? = n- N2
Tel TeT
So the time complexity of path recording algorithm is O(n - N?).

©

1.7.2 Minimum Cover Set. In Algo. 2, the size of set collection S equals the number of full paths.
In each iteration, algorithm traverse all elements in S, and there are at most |S| iterations. So, for a
tree T, it requires at most |S|? operations to find the minimum cover set. The time to calculate the
minimum cover set for all trees in T' is:

T(Minimum Cover Set) = Z IT.Pf|? < Z IT.V]? < (Z IT.V])? = N? (5)
Tell Tel TeT
So the time complexity of minimum cover set algorithm is O(N?).
In conclusion, the overall tree processing algorithm has O(n - N%) worst-case time complexity,
where n is the number of tree, and N is the total number of vertex of all trees.

	Abstract
	1 Algorithm Design
	1.1 Basic Definition
	1.2 Problem Description
	1.3 Simple Solution
	1.4 Unique Subtree Mining
	1.5 Strict Supertree Set Minify
	1.6 Runtime Detection
	1.7 Algorithm Complexity

