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Abstract—Identifying what front-end library runs on a web
page is challenging. Although many mature detectors exist on
the market, they suffer from false positives and the inability
to detect libraries bundled by packers such as Webpack. Most
importantly, the detection features they use are collected from
developers’ knowledge leading to an inefficient manual workflow
and a large number of libraries that the existing detectors cannot
detect. This paper introduces PTDETECTOR, which provides
the first automated method to generate features and detect
libraries on web pages. We propose a novel data structure, the
pTree, which we use as a detection feature. The pTree is well-
suited for automation and addresses the limitations of existing
detectors. We implement PTDETECTOR as a browser extension
and test it on 200 top-traffic websites. Our experiments show
that PTDETECTOR can identify packer-bundled libraries, and
its detection results outperform existing tools.

I. INTRODUCTION

The rapid growth of the web environment makes simple
single-file JavaScript programs a thing of the past. Chrome
first supported ES6 modules in 2017 [1]. This browser-native
support for multiple file structures shows that JavaScript is no
longer the scripting language it was initially designed to be.
Instead, it is tasked with the responsibility of developing large,
complex web applications. Along with this, many JavaScript
libraries have been developed. Cdnjs, the largest CDN (Con-
tent Delivery Networks) built to serve websites, contains
4,366 different JavaScript libraries1. Based on a technology
survey [2], only 17.7% of websites use no JavaScript libraries.

JavaScript front-end library detection is helpful for com-
panies and researchers. From the industry perspective, library
detection is used for competitor analysis, sales intelligence,
and website profiling. Survey sites, such as W3Techs, will
provide these web market research services to companies.
Library detection also plays an important role in research.
Better library detection enables more detailed web dependency
modeling, thus improving the accuracy of web static analysis.
Besides, regarding web security, a group of practitioners ran
tests on 5,000 top websites and discovered that a whopping
76.6% of them include at least one vulnerable library [3].
Library detection techniques can efficiently find libraries with
potential risks and provide fixing recommendations.

Nowadays, many JavaScript library detectors exist. Some
are integrated into commercial web analytic platforms and
provide reports as a paid service. Others are released as
open-source Chrome extensions. These tools mainly use two
kinds of detection features: globally defined library properties
and the library file name. However, our preliminary study

1Data source: https://cdnjs.com (March 2023)

indicates that both features can lead to false positives due to
their overly simple detection mechanism. Additionally, they
cannot handle libraries wrapped by packers, such as Webpack,
a module bundler that reorganizes the library file structure
and wraps the library into the local scope. Many reviews of
the detection extensions complained about their inability to
detect Webpack-bundled libraries. Moreover, these features
are collected manually using developers’ knowledge about
the library, which is a labor-intensive and error-prone task.
The most popular detectors can recognize no more than 100
libraries to date. Although many concrete research works
regarding library automated detection have been proposed for
desktop and Android applications, they can not directly apply
to websites due to huge environment differences.

To address these limitations, this paper makes the following
contributions:
1) We introduce the first automated JavaScript front-end li-

brary detector, PTDETECTOR. Our tool takes JavaScript
files and their dependency information as input and auto-
matically extracts detection features using a trivial localhost
client. We implement the detection component of PTDE-
TECTOR as a Chrome extension which is provided open-
source through an anonymous GitHub [4]. PTDETECTOR
requires less than 16MB to detect all libraries on Cdnjs.

2) We present a novel data structure — property tree (pTree)
— to depict the properties registered by the loaded library.
And we use a weight-based tree-matching algorithm to
score the existence possibility of libraries on the page. To
eliminate the impact of library dependencies and improve
performance, a series of algorithms are proposed for pTree
post-processing. Compared with the file name and property
analysis, the rich details provided by the tree structure al-
low PTDETECTOR to distinguish libraries more accurately
and detect libraries wrapped in local scope by packers.

3) We conduct a real-world study of PTDETECTOR on the
200 top-traffic ranking websites and benchmark against
the most popular open-source detector, LDC, and the most
popular commercial detector, Wappalyzer.

4) Our experimental results show that PTDETECTOR can out-
perform LDC and Wappalyzer and can identify Webpack-
bundled libraries.

II. BACKGROUND AND MOTIVATION

A. JavaScript Library in Front-end

JavaScript libraries are commonly designed to adapt to dif-
ferent runtime environments. The library’s APIs are composed



of functions wrapped in objects. These objects are registered
in the global context of the browser runtime, allowing the li-
brary’s APIs to be globally available. Listing. 1 uses simplified
code from a popular library Lodash2 as an example to present
the details of this process.

1 (function() {
2 function lodash(value) {
3 return new LodashWrapper(value);
4 }
5

6 // Define properties
7 lodash.chain = function(value) {
8 var result = lodash(value);
9 result.__wrapped__ = value;

10 return result;
11 }
12 lodash.differenceBy = ...
13 ...
14

15 // Export lodash
16 window._ = lodash;
17 }.call(this));

Listing 1. Simplified Lodash Browser Initialization Steps.

Listing. 1 presents a few key steps of the Lodash browser
initialization, which is executed when the library is loaded.
Line 1 defines an anonymous function to wrap all the code,
and line 2 defines the function lodash(value), which will
return an initialized object. Note that a function is also an
object in JavaScript. Then in Line 7 - Line 13, various jQuery
APIs (chain, differencyBy, and others) are registered
as lodash object properties. Finally, in line 16, the lodash
object is exposed to the identifier _ in the global context, i.e.,
registered as a property of window3.

There is no trivial way to know what library runs on a
web page. Since JavaScript libraries register objects to global
scopes, analyzing property names during browser runtime
is an important means of detecting front-end libraries. This
approach’s details will be expanded in Sec. II-B1.

B. Existing Detection Methods

Existing detection methods can be divided into two cate-
gories: dynamic and static. Dynamic methods detect JavaScript
properties during browser runtime, while static methods ap-
ply matching on various web content, including cookies,
DNS records, HTTP response headers, HTML source code,
JavaScript source code, and more. In the following subsec-
tions, we elaborate on these detection methods based on one
free tool (Sec. II-B1) and one commercial tool (Sec. II-B2).

1) Library-Detector-for-Chrome (LDC): LDC is the most
popular (based on GitHub star) open-source JavaScript library
detector. It was created in January 2010 and is still being
updated today. It has 600+ stars on GitHub [5] and 10,000+
users on the Chrome Extension Store [6]. As a browser
extension, LDC uses dynamic methods to detect libraries.
Listing. 2 is a simplified JavaScript snippet from the LDC
source code used to detect Lodash.

2A modern JavaScript utility library delivering modularity and performance.
3Code running in a web page share single global object window.

1 function testLodash () {
2 var _ = window._,
3 wrapper = _.chain(1);
4 if ( _ && wrapper.__wrapped__) {
5 return {version: _.VERSION || UNKNOWN};
6 }
7 return false;
8 }

Listing 2. Dynamic Detection method of Lodash in LDC.

Listing. 2 examines two JavaScript properties: _ and
_.chain, in the global context. The Lodash function
chain will return a LodashWrapper object containing
the __wrapped__ property (line 9 in Listing. 1). In line
3 of Listing. 2, LDC calls the chain function and assigns
its return to wrapper. Next, in line 4, _ and wrapper
.__wrapped__ are checked. If both of them exist, Lodash is
assumed to be present, and then, in line 5, the library version
is retrieved from the property _.VERSION ( return UNKNOWN
if not found ).

2) Wappalyzer: Wappalyzer4 is one of the best com-
mercial web technology profilers. Its browser extension has
2,000,000+ users on the Chrome web store [7]. In addition to
libraries, it detects content management systems, e-commerce
platforms, server software, and analytic tools. In this paper,
we only focus on its ability to detect libraries. Wappalyzer
published part of its detection details on GitHub [8]. Listing. 3
is a simplified JSON snippet from its meta code that detects
the Lodash library.

1 "Lodash": {
2 "js": {
3 "_.VERSION": "ˆ(.+)$\\;version:\\1",
4 "_.differenceBy": ""
5 },
6 "scriptSrc": "lodash.*\\.js",
7 }

Listing 3. Meta Data in Wappalyzer for Lodash Detection.

Two patterns are given in Listing. 3, containing both
dynamic and static methods. The “js” field, line 2, uti-
lizes JavaScript properties to perform the detection. It ex-
amines two properties in the global context: _.VERSION
and _.differenceBy. Line 6 provides a static method:
the scriptSrc field is matched with URLs of JavaScript
files included on the page. If any loaded JavaScript file name
matches the regular expression, Lodash is assumed to be
detected. Compared with LDC, Wappalyzer’s detection policy
is more lenient — as soon as one of these three conditions is
met, Wappalyzer assumes that Lodash is detected.

C. Limitation of Existing Methods

Existing detection methods inevitably lead to false detec-
tions. Due to the lack of namespaces in JavaScript, global
property conflicts are common among JavaScript libraries —
i.e., different libraries often define properties with the same
name on the window object. Jibesh et al. [9] analyzed 951
libraries and found that one out of four is potentially conflict-
ing. Therefore, detection based on a few properties can easily

4https://www.wappalyzer.com/



lead to false positives (Sec. II-C1). Moreover, the interference
of packers such as Webpack(Sec. II-C2) and the labor cost
(Sec. II-C3) required to maintain high-level detection are also
major limitations.

1) False Positive: The selection of property is crucial to the
accuracy of the dynamic detection method. On Netflix 5 home
page, we found that LDC misidentified Underscore.js 6 library
as Lodash. After manual inspection, this false identification
can be attributed to two aspects. First, Underscore.js also
defines a global _ property and a _.chain function, the same
as Lodash. Second, we found that the website developer modi-
fied the Underscore.js library and defined the __wrapped__
property in the return of chain, which satisfies the condition
(Listing. 2 line 4) for mistakenly detecting Lodash in the LDC.
For Wappalyzer, the situation is even worse. It determines
that Lodash exists as soon as it detects the presence of
_.VERSION ((Listing. 3 line 3), which is also present in the
Underscore.js library. Therefore, Wappalyzer completely loses
the ability to distinguish Lodash from Underscore.js.

The static detection method is not reliable either. It is a
common practice for web developers to reorganize library files
when importing locally. For example, on the “weather.com”
web page, we found Wappalyzer misidentified Lodash because
it matched a loaded local JavaScript file named “46202.lo-
dash.0c9c71f173e278ac6235.js”. This file name satisfies the
regular expression given in Listing. 3 line 6. But when we open
this file, its contents are actually “react .production.min.js”, a
component of the React framework.

2) False Negative: False negatives are often seen due to the
widespread usage of the Webpack, which is a module bundler
published in 2012 to solve the global variable conflict problem.
According to an industry report [10], as of March 2023, there
are 15,448,980 websites built with it. Webpack wraps library
APIs that would otherwise be defined globally into a local
scope and splits a library file into multiple chunks to be loaded
separately. As a result, libraries bundled by Webpack are no
longer detectable by any existing tools.

3) Labor Cost: Another limitation of existing tools is
that they require continuous human resources to maintain
high accuracy. Over 4,000 front-end JavaScript libraries are
currently on Cdnjs alone, each constantly being updated with
newer versions. For example, React has 531 versions recorded
on Cdnjs. Trying to adapt the detector to so many libraries and
versions manually can be time-consuming and error-prone.

D. Our Tool: PTDETECTOR

PTDETECTOR follows the dynamic detection approach —
using the libraries’ runtime properties to identify. However,
unlike LDC or Wappalyzer, which only validates a small num-
ber of properties, PTDETECTOR utilizes the property tree as
the feature and detects the library by runtime-matching similar
tree structures. We name such tree structure built on property
relationship as pTree, elaborated in Sec. III-B. Fig. 1 shows

5A well-known TV streaming website: https://www.netflix.com/
6A library that provides functional programming helpers.

part of Lodash’s and Underscore.js’s pTrees. The complete
pTrees of these two have 258 and 157 vertices respectively.
The rich property information allows PTDETECTOR to effec-
tively distinguish even similar libraries, thus avoiding false
positives mentioned in Sec. II-C1. Besides, PTDETECTOR is
not limited to matching only in the global context - the search
scope is the entire pTree rooted at the window of the page -
so it can detect Webpack-bundled libraries.

Fig. 1. Part of pTrees of Lodash and Underscore.js.

Most importantly, PTDETECTOR presents a way to automat-
ically collect the pTree using a self-built web client. In this
paper, we propose an algorithm to assign different weights to
each vertex of the pTree, allowing the matching to accom-
modate small library changes. These changes may come from
the library users’ modifications or version differences. With
the automation pipeline, a large number of libraries’ detection
features can be collected quickly, which gives PTDETECTOR
a considerable advantage over existing tools regarding the
number of libraries it can detect.

III. DESIGN

A. System Overview

PTDETECTOR is a browser extension to give scores to all
possible JavaScript files loaded on the web page. A score of
100 indicates an exact match, and a score of 0 indicates no
possibility of existence. Note that PTDETECTOR’s detection
target is the file, not the library. One library may contain
multiple JavaScript files. The discussion of extending file
detection to library detection is in Sec. IV-A1.

PTDETECTOR uses pTree as the detection feature. The
definition and generation algorithm of pTree are given in
Sec. III-B. Several processing steps on the pTree are nec-
essary to promote detection effectiveness, including random-
generated vertices removal to eliminate non-determinism; root-
pruning to prevent the impact of dependencies; credit assign-
ment, which allows matching to accommodate small changes;
tree trim to save storage space; and inverted indexing to
increase matching efficiency. These steps are expanded in
Sec. III-C with the workflow graph in Fig. 2. Finally, the
pTree matching algorithm is applied during browser runtime
detection, whose detail is disclosed in Sec. III-D.

B. Property Tree: pTree

1) pTree Definition: As the core concept of PTDETECTOR,
pTree refers to a tree formed by the property relationship
between JavaScript variables at a runtime frame. We propose
this novel data structure to achieve a more accurate character-
ization of the objects registered by JavaScript libraries and to
enable better runtime library detection based on tree similarity



Fig. 2. PTDETECTOR Feature Generation Workflow.

matching. Formally, if we use the symbol JfK to denote the
set of all JavaScript variables at a runtime frame f , and ζv to
denote the variable represented by the vertex v, the pTree Tf

is a tree that meets following requirements:
For each vertex v ∈ V [Tf ], we have ζv ∈ JfK;
For each edge (p, c) ∈ E[Tf ], where p is c’s parent,
we have ζp is an object, and ζc is a property of ζp.

For each vertex v, we assign it three attributes: ζv’s name,
type, and value (only if ζv has a meaningful value). In the
later tree-matching algorithm, a vertex is considered matched
only if all three attributes match. Vertex types’ categories and
corresponding values are shown in Table I. JavaScript value
types can be divided into two categories: primitive types and
object types. Primitive types include null/undefined, number,
string, and Boolean. For null/undefined, it does not have a
meaningful value. For numbers and strings, to save storage
space, their values are shortened7 as shown in Table I.

TABLE I
SIX VERTEX TYPES OF PTREE USED IN THIS PAPER.

Category Type Value Children

primitive
types

null / undefined -
number v.toFixed (3)
string v.slice (0, 10)
Boolean v

object types array / set / map v.length
other object - ✓

Any JavaScript value other than primitive types is an object.
Here we separate object type into two classes: one is “array
/ map / set”; another is “other object”. Array, map, and set
are JavaScript built-in objects used to store elements (i.e.,
properties from the object’s view). Therefore, we use the
number of elements as their value and do not recursively check
the properties of these vertices to avoid oversizing the tree. As
a result, among the six vertex types in Table I, only the “other
object” can have children vertices in the pTree we build.

2) pTree Generation: Given a variable v as root, we can
generate a pTree by the following steps. Step I, create a
vertex v, and determine its type. Primitive types can be

7As far, our experiment using the shortened value has not led to ambiguity.

determined by the typeof() function; Object types can be
determined by comparing objects’ prototype8. Step II, based
on v’s type, we get its value following the instruction in
Table I. Step III, if n belongs to “other object”, we use the
Object.getOwnPeopertyNames()9 function to get ζv’s
properties. For each of them, repeat Step I and append it as
v’s child. Notice that if a property of v points to an ancestor
variable, then we should skip this property; otherwise, the
algorithm will not end.

We leverage a trivial localhost client to generate the pTree.
The client will host an empty web page to load the target
JavaScript file. Once the file is loaded, we use window as the
root for pTree generation. In this process, we only care about
the new global variables defined by this file. On an empty web
page, 850 properties are already defined on the window object
in our browser environment. We omit these native properties.
Subsequent mentions of generating pTree on the web page all
follow the above process.

C. Feature Generation

Fig. 2 depicts PTDETECTOR’s feature generation system
workflow. The input to the system is a JavaScript file list. Each
entry includes basic file information and its dependencies.
PTDETECTOR will load the file with dependencies in localhost
web pages and generate the pTree. The system’s output is a
JSON file “pt.json” containing all pTree information of these
files. This workflow has three main sections. The first part is
the generation of pTree while eliminating the impact of depen-
dencies (Sec. III-C1). The second part is the post-processing
of the pTree, whose core task is vertex credit assignment
(Sec. III-C2). In the end, all generated pTree will be stored in
an inverted indexing layout JSON file (Sec. III-C3).

1) Dependency Elimination: Some library files need other
files to be loaded before them, which we call outer depen-
dencies. For ease of use, some libraries copy the required
dependencies directly into their own files, and we call them

8For example, we can determine whether an object O is an array using the
such equation: Object.getPrototypeOf(O)===Array.prototype

9Object.keys() function can also return properties of an object, but
non-enumerable ones are omitted. Some libraries may register all properties
as non-enumerable. Velocity.js (v 2.0.6) is a case.



inner dependencies. The existence of dependencies in the
feature generation stage can increase the possibility of false
positives during detection. Assume the target file A has a
dependency B. Because B must be loaded to run A, the
generated feature will contain information from both files.

To remove the interference of dependencies, we use two
clients to generate pTrees separately and calculate the dif-
ference between two pTrees. For the first localhost client
(upper one in Fig. 2), we load outer dependencies and inner
dependencies to get the dependency pTree dpT ; For the second
localhost client (lower one), we load the target file and its outer
dependencies. In addition, we observed that some files define
random variables10. To eliminate the randomness in detection,
we generate pTree twice in the second localhost client and
remove all different vertices to get a stable full pTree fpT .
Then we remove those vertices in fpT that are also present
in dpT . We call this process root-pruning and refer to the
tree after deletion as the root-pruned pTree rpT . Simply put,
rpT = fpT − dpT .

Algorithm 1 Root-pruning Algorithm
Input: full pTree: fpT , dependency pTree: dpT
Output: root-pruned pTree: rpT

1: rpT ← new Vertex(window)
2: Q1, Q2 := queue initialized with fpT ’s / dpT ’s root

vertex
3: while Q1 ̸= ∅ do
4: u, v ← remove vertex from the front of Q1 / Q2
5: for each child s of u do
6: if ∃ t ∈ v’s children, having s = t then
7: insert s / t to the end of Q1 / Q2
8: else
9: append the subtree rooted at s as rpT ’s child

10: end if
11: end for
12: end while

Algo. 1 is the pseudocode of the root-pruning algorithm.
The inputs to the algorithm are two pTrees: fpT and dpT .
The output is the root-pruned pTree rpT . First, we create a
new vertex, representing window, as rpT ’s root in line 1. Then,
in line 2, two queues are initialized for a BFS from line 3 to
line 12. While traversing children vertices in fpT , we check
whether there is an identical vertex in dpT (line 6) — i.e., the
path and three attributes of the vertex are all identical. If not,
in line 9, we append the subtree rooted at this vertex as the
child of rpT and stop traversing on this subtree.

Fig. 3 uses jQuery UI to demonstrate the root-pruning
procedure. jQuery UI is a UI library built on top of jQuery. The
left part of Fig. 3 shows the simplified pTree generated from
the “jquery-ui.js” file. Those vertices also present in jQuery
pTree are colored black, and others are colored orange. In
Algo. 1, we detect all orange subtrees in fpT and combine

10Some libraries, such as jQuery, use random numbers to name some
properties, which will result in a lower match score, thus reducing the recall.

them into a new tree rpT , shown in the right part of Fig. 3.
Considering that rpT needs to be expanded into a complete
tree for matching, each subtree should have its original path
recorded. For example, in Fig. 3 rpT , the original path of the
subtree rooted at the vertex labeled “slider” is “[jQuery, fn]”.

Fig. 3. Root-prune Demonstration (jQuery UI library).

2) pTree Credit: In pTree, each vertex is not equally
important for prediction. In order to make the matching
able to accommodate small changes from the library users’
modifications or version differences, we assign each vertex a
credit. The total credit of one pTree is set to 100. We design
the vertex credit assignment rule based on two intuitions:

1) The smaller the depth, the higher the importance;
2) The larger the subtree size, the higher the importance.
The first intuition is that the high-level architecture of the

library generally does not change. What changes are specific
values or functions, i.e., the leaf vertices in a pTree. The
second intuition comes from the following observation: the
number of children of a vertex can reflect the number of APIs
provided by the corresponding object, and objects with more
APIs are more representative.

Now we define these intuitions formally. For a vertex v in
the pTree, let d denote depth of v, D denote depth of pTree,
|Tv| denote the number of vertices of the subtree rooted at v,
then the credit of v can be calculated using the equation:

credit =
2D−d

2D − 1
· |Tv|∑

u.depth=d |Tu|
· 100 (1)

The first half of Eq.(1) ensures that the sum of credits in one
layer of the pTree is twice that of the next layer. The credit
of depth zero is 0, because window will not participate in
the matching. The maximum credit starts from depth one and
decreases in geometric progression from layer to layer. The
second half of the equation shows that vertices in one layer
are assigned credits equally using subtree size as weight.

Another necessary operation is trimming the tree size. Some
libraries have pTree with over 10,000 vertices. Using all the
vertices as the feature will take up too much browser space
and slow the detection speed. To retain high-credit potential
vertices, trimming follows such preferences: (1) drop vertices
with deeper depth; (2) at a given depth, drop vertices with
smaller subtree size. Note that the trimming operation will lose



subtree size information while discarding redundant vertices,
which is a key parameter in Eq.(1). Hence, in the post-
processing stage (green boxes in Fig. 2), the first step is to
calculate the subtree size of each vertex in the rpT . Then, the
pTree will be trimmed to a smaller tree based on vertex number
and depth requirements. After that, the credit calculation will
be conducted on the trimmed tree.

3) Inverted Indexing: To enable matching, the rpT will be
expanded into a normal tree after credit assignment. Fig. 4
left is the expanded tree from the rpT in Fig. 3. Intermediate
vertices (blue dotted nodes) added according to subtree path
records will be assigned zero credit. Here the root vertex
“window” is no longer needed because it is not a property
defined by the library. We remove the root and split the pTree
into sub-pTrees (right part in Fig. 4). The root vertex name of
each sub-pTree is the identifier. In our example, file “jquery-
ui.js” has two identifiers: “jQuery” and “$”.

Fig. 4. Sub-pTree generation. Blue dotted vertices are added vertices.

To promote the efficiency of later tree matching, we or-
ganize generated sub-pTrees in the inverted indexing layout.
Specifically, we combine all sub-pTrees with the same iden-
tifier and use it as their index. Fig. 5 shows an example of
the inverted indexing table. The leftmost column lists all the
identifiers, which map to sub-pTrees in different files. When
one identifier is detected during runtime, its mapping sub-
pTrees will be considered in the matching calculation. In
the end, the inverted indexing table is stored in a JSON file
“pt.json”, and we minimize it into a compact representation.

Fig. 5. Inverted indexing table mapping identifiers to sub-pTrees.

D. Runtime Detection

We implement the PTDETECTOR detection ability as a
browser extension. Once the extension’s button is clicked, the
detection procedure will start on the current web page. The
libraries’ scores will be listed as the detection result in the
extension popup window.

Fig. 6 depicts the detection workflow of PTDETECTOR.
First, it generates the pTree rooted at window on the target web
page. We limit the max depth of pTree to three to avoid the

Fig. 6. PTDETECTOR Detection Workflow.

tree being too large. Then, we traverse the pTree and collect
all vertices that have the same name with identifiers (e.g.,
“$” and “ ” in Fig. 6). Next, based on the inverted indexing
table, we use these vertices as targets for tree similarity
computation (Algo. 2) with all relevant sub-pTrees indexed
by the identifier. Each sub-pTree corresponds to one file, so
after the computation, each file can get a score that represents
the similarity of that file at the current vertex. There are two
details to consider here. First, one file may link to multiple sub-
pTrees. Hence, if several vertices with the same path index to
a single file, the file score should be the sum of these vertex
scores. Second, one web page may import a JavaScript file
multiple times in different places. Thus, if one file is detected
under more than one path in the web page pTree, we take the
highest one as the final score of this file on the current page.
Finally, we can get a list of all detected JavaScript files and
display them in score descending order.

Algorithm 2 pTree Similarity Comparison Algorithm
Input: target pTree: tpT , sub-pTree: spT
Output: similarity score: S

1: Initialization: S ← 0
2: Match vertex count: cnt← 0
3: for each vertex u ∈ V [tpT ] do
4: for each vertex v ∈ V [spT ] do
5: if u.path = v.path and u.name = v.name and

u.type = v.type and u.value = v.value then
6: S ← S + v.credit, cnt← cnt+ 1
7: end if
8: end for
9: end for

10: if cnt = 1 then
11: S ← 0
12: end if

Algo. 2 shows the detail of pTree similarity comparison.
There are two inputs: tpT, the pTree generated from a variable
in the browser context, and spT, a sub-pTree from the inverted
indexing table. The algorithm will traverse two pTrees and
examine all match vertices. Two vertices match if and only if
they have the same tree path and three attributes (name, type,
and value) mentioned in Sec. III-B1. The value of the score is
the sum of the credits of all matching vertices. Besides, we use
a variable cnt (line 2) to record the matched vertex number.
To reduce false positives, if only one vertex matches, we set
the score as zero (line 11).



IV. EVALUATION

This section investigates the version agnostic detection
ability of PTDETECTOR on front-end JavaScript libraries on
real-world web pages. In Sec. IV-A1, we discuss our dataset.
We answer two research questions: RQ1 (Sec. IV-B1), how
does PTDETECTOR compare to LDC and Wappalyzer? RQ2
(Sec. IV-B2), what are the best settings of our tool? Experi-
ment data are provided as supplementary material on HotCRP.

A. Experiment Setup

1) Library Collection: To make the comparison unbiased,
the target libraries are taken from the intersection of the
technique lists11 of LDC and Wappalyzer. As of March 15,
2023, 112 web techniques can be detected both by LDC
and Wappalyzer, among which we need to filter out front-
end JavaScript libraries. However, it is difficult to determine
whether a technique belongs to the front-end JavaScript library
since many techniques can accept multiple runtime environ-
ments. Considering that almost all front-end libraries mount
their code on CDN for convenient HTML hyperlink importing,
we pick all techniques that have code mounted on the Cdnjs
platform or have CDN links provided on their official websites.
Based on this, 83 techniques meet our requirements.

For each library, we use its latest version for feature genera-
tion. One library version may contain multiple JavaScript files,
and we assume that the library is present if and only if at least
one of its JavaScript files is loaded. Thus, adding all files of a
library version into feature generation is unnecessary. In most
cases, multiple files within a version have inter-dependencies.
We call those that don’t rely on other files as the library base
files. It is obvious that a library has at least one base file, and
if the library is imported into the page, then at least one of its
base files must exist. As a result, we can only consider library
base files as the detection target. If a library has more than one
base file detected on the web page, then the similarity score
of the library is taken as the highest score among the base
files. Most libraries provide two file versions for one snippet
of JavaScript code - an original and a minified one. Since
they do not differ under dynamic detection, we use only the
minified version. This results in 99 JavaScript base files out
of 83 libraries as our experiment dataset.

Acquiring the accurate dependency information of each file
is critical to detection precision. However, due to the lack
of a unified management system, there is no trivial way to
determine the dependencies of front-end libraries. For each
base file, we manually check its inner and outer dependencies.
Outer dependencies can be easily obtained from the library’s
official website instructions, while inner dependencies are
hard to determine. Based on their source code, we carefully
compare and verify other libraries contained in the file. In the
end, we found 14 base files requiring outer dependencies and
8 base files having inner dependencies.

11Detectors normally disclose the web techniques they can detect on their
official websites, including libraries.

2) Website Collection: First, we select the top 200 websites
from the SEMRUSH websites ranking [11], which is based on
the US traffic on all categories of websites. We use the home
page of each website as our testing web page. The ground
truth of libraries these web pages use is necessary for the
later comparison. Considering that no existing ground truth is
provided, we determine ourselves using the following strategy.
First, we manually apply three detectors — PTDETECTOR,
LDC, and Wappalyzer — on each web page. Here we set
PTDETECTOR score threshold t as 0, i.e., library is assumed
present as long as the score is larger than zero. For those pages
where most of the content is displayed only after login, we
use a temporary account for login and then perform library
detection. Next, we take a union of all libraries detected
by the three detectors12, and carefully verify the existence
of these libraries. Verification includes comparing web page
JavaScript code, checking HTML information, investigating
detectors’ source code, and browsing the development blogs
of the websites. During this process, we found that many web
pages only contain jQuery or core-js, the most common two
front-end libraries. To increase the diversity of libraries in the
experiment, we exclude web pages that only contain jQuery or
core-js and those that don’t contain any library. Finally, with
great effort, we arrive at a dataset that contains 80 web pages
with 36 different libraries and 306 library occurrences.

3) Specification: We implement the detection component
of PTDETECTOR as a Chrome extension. All the experiments
are conducted on macOS Ventura (V 13.2.1) with an Apple
M1 chip and 8G memory. All the web pages are opened
on Chrome 110.0.5481.177 (Official Build) (arm64). This
configuration is close to how everyday users use the browser.

B. RQ1: Comparison of Detection Tools.

1) Feature Analysis: We apply the PTDETECTOR feature
generation workflow on our library dataset — 99 JavaScript
files from 83 libraries. During pTree generation, we limit
the max number of vertices to 10,000 and the max depth to
100, and get 99 pTrees in total. Table II lists size (number
of vertices in the pTree), depth, number of back edges, and
number of identifiers of each pTree. Back edges occur in
the pTree generation algorithm. We removed them during the
feature generation to prevent cycles. The number of identifiers
equals the number of sub-pTrees for each file.

TABLE II
PTREE STATISTICS.

Size Depth # Back Edges # Identifiers
Average 1239.6 4.6 9.7 4.1
Median 112 4.0 0 1

Max 10000+ 15 244 68
Min 3 1 0 1

12Here, we assume that libraries not detected by any detector are not
present. On the one hand, the probability of being missed by all three detectors
simultaneously is low. On the other hand, these missed ones will not affect
the comparison result between detectors.



Table II shows that the range of the pTree sizes is large.
The library with the smallest pTree size, Web Font Loader13,
only provides one function and one object to wrap the function.
While the library with the largest pTree size, Ink14, has a pTree
with over 10,000 vertices. The number of back edges ranges
from 0 to 244, and 64 pTrees don’t have a back edge. In
most cases, back edges come from the copy of the reference
to the window or the outermost wrapping object. The number
of identifiers ranges from 1 to 68, and 57 files only have one
identifier, which implies just one outermost object is used to
wrap all contents.

The distributions of pTree’s size and depth are shown in
Fig. 7. Most sizes are between 10 and 1,000, and most depths
are between 1 and 6. The good news is that only a few pTrees
(9 / 99 = 9.1%) have less than ten vertices since too few
vertices will affect the detection accuracy. On the other hand,
too many vertices will reduce the detection efficiency, so pTree
trimming is necessary. In this research question, we trim all
pTrees with size and depth limits as 50 and 5.

Fig. 7. Histogram of pTree’s Size and Depth Distribution.

2) Web Page Detection: We load generated pTree features
into PTDETECTOR and apply it to our dataset. After opening
a web page, we wait 20s to ensure all libraries finish loading.
PTDETECTOR traverses the first three layers in the web
page’s pTree to match identifiers and checks pTree similar-
ity (Algo. 2). PTDETECTOR detects 289 library occurrences
(score > 0). Among them, 263 have identifiers matched in the
first layer, 19 in the second, and 7 in the third. Libraries with
identifier layer depth larger than one are not imported in the
browser’s global context (may utilize techniques like packers)
and thus cannot be found by other detectors.

Table III shows the detection result comparison of PT-
DETECTOR, LDC, and Wappalzer. We use three metrics to
measure the detection performance — accuracy, precision,
and recall15. Surprisingly, LDC as an open-source software
exceeds the commercial tool Wappalyzer on all three met-
rics. Therefore, we use the better-performing LDC as the
benchmark for PTDETECTOR. Fig. 8 presents the detection
performance of PTDETECTOR under score threshold t ranging
from 50 to 85. The dashed lines in the figure mark the
precision and recall value of LDC as benchmarks.

In Fig. 8, the accuracy of PTDETECTOR always maintains
a high level. This is because the value of TN far exceeds

13https://github.com/typekit/webfontloader
14https://ink.sapo.pt/
15Accuracy= TP+TN

TP+TN+FP+FN
, precision= TP

TP+FP
, recall= TP

TP+FN
.

TABLE III
DETECTION PERFORMANCE COMPARISON.

PTdetectorLDC Wappalyzer
t = 57 t = 70 t = 77

Accuracy 99.10% 98.63% 99.41% 99.43% 99.25%
Precision 96.59% 94.61% 96.84% ↑ 100% 100%

Recall 83.33% 74.51% 90.20% 87.58% 83.66% ↑

Fig. 8. PTDETECTOR Detection Performance (Compared with LDC).

that of TP, FN, and FP. A website loads an average of 3.8
libraries in our ground truth dataset, but the tools check for 83
libraries. Therefore, most library tests are negative, resulting
in large TN. As a result, accuracy can not exhibit performance
differences in this experiment.

As threshold t increases, PTDETECTOR’s precision keeps
increasing while recall keeps decreasing. When t ≥ 57, the
precision of PTDETECTOR exceeds LDC’s; when t ≤ 77,
the recall of PTDETECTOR exceeds LDC’s (“↑” marks in
Table III). Overall, when 57 ≤ t ≤ 77, PTDETECTOR
outperforms LDC and Wappalyzer on all three metrics. And
when t = 70, PTDETECTOR achieves high precision and recall
— 100% and 87.58%.

For each library, we record the number of its occurrences
in our dataset and calculate the average score given by
PTDETECTOR (0 if not detected). Table IV lists the top ten and
last ten libraries based on avg. score ranking. Interestingly, the
six libraries with an avg. score below 80 except Modernizr16

all belong to frameworks. Strictly, JavaScript libraries and
frameworks are different. The former is reusable code with a
single primary use case. The latter is a set of JavaScript codes
that provide pre-written code for everyday programming tasks
to web developers. Most of the frameworks’ core code is on
the back end, aiding the developer’s work. The code mounted
on CDN is commonly their runtime debugging tool, which is
optional to load. As a result, PTDETECTOR failed to achieve
satisfactory detection on these frameworks.

Frameworks have various architectures, and automating
their detection is hard. Luckily, the number of commonly used
frameworks is small, and some provide official browser exten-
sion tools for detection: “React Developer Tools” for “React”

16A feature detection library mainly used on the back-end. The files
mounted on Cdnjs are old versions, leading to a low average score.



TABLE IV
PTDETECTOR DETECTION SCORE RANKING OF LIBRARIES.

No. Library avg.
score cnt

1 Lo-dash 100 21
2 IfVisible.js 100 4
3 WebFont 100 1
4 Head JS 100 1
5 Kendo UI 99.9 1
6 Prototype 99.8 1
7 Pusher 99.4 2
8 jQuery 99.1 60
9 RequireJS 99 12
10 Moment.js 98.7 6

No. Library avg.
score cnt

27 SWFObject 88.1 1
28 Backbone 87.8 8
29 Knockout 82.1 1
30 Bootstrap 79.5 7
31 Ext JS 75.4 1
32 Preact 74.7 1
33 Modernizr 65 12
34 React 11.4 28
35 Vue 0 3
36 Angular 0 1

and “Vue.js devtools” for “Vue”. Hence, PTDETECTOR could
combine these existing tools for better framework detection.

Fig. 9. PTDETECTOR Performance after Excluding Frameworks.
Fig. 9 shows the performance of PTDETECTOR after exclud-

ing six frameworks. The recall has been significantly improved
compared to Fig. 8. When t reaches 68, the precision achieves
100%. At the same time, the recall is 98.11%, far higher than
the recall of 83.33% of LDC (out of range in Fig. 9).

RQ1 Conclusion: When the threshold is set within a
reasonable range (57 to 77), PTDETECTOR’s detection
ability outperforms LDC and Wappalyzer in all metrics,
even in the presence of libraries wrapped by packers.

C. RQ2: Best Trim Settings of PTDETECTOR.

In PTDETECTOR, we trim a pTree into a smaller version
to prevent oversizing. The trim size and depth setting will
affect the detection performance and efficiency. To answer this
research question, we examine the performance, overhead, and
space of PTDETECTOR under different trim settings. We fix
the trim depth limit to five. According to Eq.(1), where vertex
credit decreases in geometric progression as depth grows, the
sum of credits outside of the first five layers is less than 1/32,
which has little effect on the final score. As a result, we only
need to focus on investigating the impact of the size limit.

We apply PTDETECTOR with eight different size limits and
repeat the detection steps in RQ1. We calculate three values —
AUC, “avg. Time”, and “Space per Lib”, shown in Table V,
to measure the detection performance, overhead, and space
requirement of PTDETECTOR. AUC represents the area under
the ROC curve, providing an aggregate performance measure

across all score thresholds. “avg. Time” is the average time
spent on detection for all web pages, starting from detection
and ending at the result display. For each web page, we
ran the test program five times and averaged the test time
for this page to mitigate the impact of network fluctuations
on timing. We use “avg. Time” to measure the overhead
of PTDETECTOR. “Space per Lib” is obtained by dividing
the size of the generated JSON file, which stores the pTree
inverted indexing table, by the number of libraries.

TABLE V
AUC, TIME, AND SPACE UNDER EIGHT SIZE LIMIT.

Size Limit AUC avg. Time (ms) Space per Lib (KB)
5 0.8688 790.16 0.40
10 0.8737 755.31 0.84
25 0.9342 777.69 2.02
50 0.9422 772.81 3.60
100 0.9374 806.77 6.36
200 0.9325 790.34 10.41
500 0.9241 770.56 18.84
1000 0.9192 777.20 28.35

Fig. 10 presents the data in Table V as line graphs. The
figure shows that the AUC is low when the size limit is less
than 10. The AUC rises sharply when the size limit increases
from 10 to 50. However, after 50, the AUC decreases slowly
until the size limit reaches 1000. This result is counter-intuitive
at first glance, considering that a larger size limit implies
richer information. We use the latest version of each library
during the feature generation, but the actual web page may
use a different version. Thus, the larger the pTree size, the
more negatively it impacts the detection performance when
the version of the library the pTree was built from differs
from the version of the library loaded by the web page.

The mid plot in Fig. 10 shows the “avg. Time” trend. We
can see that the detection time does not show regular changes
as the size limit increases. This occurs because detection time
is greatly affected by network fluctuations. Additionally, the
detection time depends on the pTree structure of the web page
and not the size of pTrees collected from libraries.

The right plot in Fig. 10 shows space usage. As the size
limit goes up, “Space per Lib” shows an approximately linear
growth. If we consider using 50 as the size limit to store pTree
information for all libraries on Cdnjs, the required space would
be 4366× 3.6KB = 15.31MB. This is within the acceptable
range for a browser extension.

RQ2 Conclusion: PTDETECTOR achieves the highest
detection performance around a size limit of 50 with
an average detection in less than 800ms. Space usage
is acceptable (4366 libraries in less than 16MB).

V. LIMITATION

Although PTDETECTOR shows good performance, some
limitations still exist. The first is the inability to detect library
versions. Today, there are 2,509,859 library versions on Cdnjs.
With a size limit of 50, over 8G space is needed to store all



Fig. 10. The Trend of AUC (left), Time (middle), and Space (right) under Different Size Limits.

their feature information. One approach is to conduct two-layer
detection, i.e., detecting the libraries first and then performing
specific version detection after generating just-in-time pTrees
for each version. This is our future work.

Another limitation lies in module detection. ES6 module is
a new browser library importing mechanism that allows partial
library loading. Our pTree matching algorithm is based on the
assumption that the library is always loaded entirely. However,
our observation shows that the ES6 module is not popularized
among websites. Developers still prefer to use the traditional
library loading method. None of the top 200 websites use the
ES6 module.

The dependency requirement is also a limitation. PTDE-
TECTOR requires accurate dependency information for each
JavaScript file as input. However, dependency information can
only be collected manually, greatly limiting the tool’s automa-
tion level. In fact, PTDETECTOR, with a few modifications, is
also capable of automatic dependency detection. This also is
our future work.

VI. RELATED WORK

Library Detection Although, to the best of our knowl-
edge, we are the first to investigate library detection for web
applications, many approaches have been proposed to detect
third-party libraries for desktop and Android applications. The
common strategy is extracting features from the source code
and matching the binary program library. Binary Analysis Tool
(BAT) [12] is a representative binary matching method that
utilizes constant values as the detection feature and applies a
frequency-based ranking method to identify the presence of
libraries. OSSPolice [13] introduces a hierarchical indexing
scheme to better use the constant information and the sources’
directory tree. This data structure inspired us to design an
inverted indexing table to store pTrees. Then BCFinder [14]
makes the indexing lightweight and the detection platform-
independent. B2SFinder [15] synthesizes both constant and
control-flow features from binary based on their importance-
weighting methods, giving more reliable library detection
results. Xian Zhan et al. [16] conducted the first empirical
study on existing Android library detection techniques and
proposed tool selection suggestions. ModX [17] introduces a
novel algorithm to detect partially loaded libraries via semantic
module matching. Unfortunately, these methods cannot adapt
to the web environment due to the vast differences between
web and traditional applications.

Web Library Analysis Many kinds of library analysis work
have been done. Feldthaus et al. [18] present a pragmatic ap-
proach to check the correctness of TypeScript files with respect
to JavaScript library implementations. Erik et al. [19] explore
the concept of a reasonably-most general client and introduce a
new static analysis tool for TypeScript verification. Patra et al.
[9] present an automated method to detect JavaScript libraries’
conflicts and show that one out of four libraries is potentially
conflicting. Moller et al. [20] develop the tool Tapir that finds
the relevant locations in the client code to help clients adapt
their code to the breaking changes. Wyss et al. [21] propose
a tool to programmatically detect hidden clones in npm and
match them to their source packages. Their tool utilizes a
directory tree as a detection feature, which does not apply
to the front-end library.

Analysis of JavaScript The JavaScript analysis research
can be divided into two main topics: static analysis and
dynamic analysis. According to an empirical study [22], static
has been the most dominant research topic for client-side
JavaScript applications. Numbers of work focus on extending
analysis scope, including dynamically loaded code [23], [24],
dynamic features [25], [26], and DOM [27], [28]. Another
static analysis trend is to improve the analysis precision
by handling dynamic features and loops more elaborately.
To address dynamic features, various hybrid approaches are
proposed [29], [30], [31], [32]. For loops, researchers also
proposed techniques to analyze them precisely [33], [28].
Because of the extremely dynamic nature of JavaScript,
dynamic analysis is also an active research topic. Several
testing techniques have been proposed to address language-
specific features [34], [35], [36], [37]. To enhance the dynamic
analysis coverage, crawling and dynamic symbolic execution
techniques have been proposed [38], [39], [40].

VII. CONCLUSION

JavaScript front-end library detection is a long-standing
challenge. This paper introduces PTDETECTOR, which pro-
vides the first automated method to detect JavaScript front-
end libraries on web pages. Using JavaScript library files and
their dependencies as input, the system generates pTrees as the
detection feature. Our experiments on real-world web pages
show that PTDETECTOR can identify packer-bundled libraries
and its detection results outperform LDC and Wappalyzer in
all metrics when the threshold is reasonably set.
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