
CSE 632: Analysis of Algorithms II: Randomized Algorithms Spring 2024

Lecture 9: MAX-SAT
Lecturer: Zongchen Chen

1 MAX-SAT Problem

Consider the MAX-SAT problem (maximum satisfiability problem): Given a Boolean formula F in CNF
(conjunctive normal form) with n variables x1, . . . , xn and m clauses c1, . . . , cm, find a truth assignment to
the variables that maximizes the number of satisfied clauses.

Example 1. Consider a CNF formula

F = (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3) ∧ (¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (¬x4).

The truth assignment x1 = F, x2 = F, x3 = T, x4 = F satisfies four clauses. It can be checked that no
assignment satisfies all five clauses.

MAX-SAT is clearly NP-hard, and so we aim for (randomized) approximation algorithms: Output an
assignment such that the number of satisfied clauses is at least α · OPT (in expectation), where α ∈ [0, 1] is
the approximation ratio and OPT is the optimal value (i.e., the maximum number of satisfied clauses of an
assignment).

2 Simple Approximation Algorithm

Lemma 2. For a CNF formula F with m clauses, there exists an assignment satisfying at least m/2 clauses.
In fact, a random assignment satisfies at least m/2 clauses in expectation.

Proof. Consider a uniformly random truth assignment x, where for each i independently we set xi = T with
probability 1/2 and xi = F with probability 1/2. For each clause cj , let Yj be an indicator random variable
such that Yj = 1 if cj is satisfied by x, and Yj = 0 otherwise. Let Y =

∑m
j=1 Yj be the number of satisfied

clauses. Notice that for every j, suppose the size of cj is kj ≥ 1, and we have

EYj = Pr (cj is satisfied) = 1− 1

2kj
≥ 1− 1

2
=

1

2
.

Therefore, by the linearity of expectation we have

EY =

m∑
j=1

EYj ≥
m

2
, (1)

as claimed.

Lemma 2 gives a simple randomized approximation algorithm (i.e., outputting a random assignment)
such that the number of satisfied clauses is at least 1

2OPT in expectation, since OPT ≤ m.

Derandomization via the method of conditional probabilities Note that the guarantee of the simple
randomized approximation algorithm is to output an assignment satisfying at least m/2 clauses in expecta-
tion. Meanwhile, we hope to obtain an assignment satisfying m/2 clauses with high probability (say, with
probability 1 − δ for any small δ > 0). We will actually present a deterministic algorithm such that the

1

number of satisfying clauses is at least m/2 always (i.e., with probability 1). This is achieved by the method
of conditional probabilities.

By the law of total expectation, we have

EY = Pr(x1 = T)E[Y |x1 = T] + Pr(x1 = F)E[Y |x1 = F]

=
1

2
(E[Y |x1 = T] + E[Y |x1 = F]) .

The idea is as follows. Since EY ≥ m/2, we know that either E[Y |x1 = T] ≥ m/2 or E[Y |x1 = F] ≥ m/2. In
the former case, we should set x1 = T, and in the latter x1 = F. A key observation is that we can exactly
compute the two conditional expectations E[Y |x1 = T] and E[Y |x1 = F] in linear time by the linearity of
expectation, and hence we can determine the way to set x1 since the larger one is at least m/2.

Algorithm 1 Derandomization of the simple algorithm for MAX-SAT

while ∃ variable x whose truth value is not assigned do
Compute E[Y |x = T] and E[Y |x = F] where Y = number of satisfied clauses of a random assignment;
if E[Y |x = T] ≥ E[Y |x = F] then

x← T
else . E[Y |x = T] < E[Y |x = F]

x← F
end if
Simplify F (remove x, satisfied clauses, and empty clauses)

end while

Algorithm 1 is deterministic and outputs an assignment satisfying at least m/2 clauses.

3 LP-Based Approximation Algorithm

IP for MAX-SAT We represent the MAX-SAT problem as an equivalent 0/1 IP in the following way.
We use 1 to represent T and 0 for F; hence for each i ∈ [n], xi = 1 if xi is assigned T, and xi = 0 otherwise.
For each j ∈ [m], let zj be the indicator variable for whether the clause cj is satisfied by the assignment or
not; namely, zj = 1 if cj is satisfied and zj = 0 otherwise. The objective function is clearly

∑m
j=1 zj , the

number of satisfied clauses, which we want to maximize. For each clause cj , we add a corresponding linear
constraint in the following way. Let Pj be the set of those variables that appear in positive form in cj , and
Nj be the set of those in negative form. Then we add the constraint∑

i∈Pj

xi +
∑
i∈Nj

(1− xi) ≥ zj .

Example 3. Suppose c4 = (x3∨¬x5∨x7∨¬x8). Then Pj = {3, 7} andNj = {5, 8}, and we add the constraint
x3 + (1−x5) +x7 + (1−x8) ≥ z4. Observe that c4 is unsatisfied if and only if x3 = 1−x5 = x7 = 1−x8 = 0,
in which case z4 is forced to be 0.

We obtain an equivalent 0/1 IP for MAX-SAT.

max

m∑
j=1

zj (IP for MAX-SAT)

subject to
∑
i∈Pj

xi +
∑
i∈Nj

(1− xi) ≥ zj , ∀j ∈ [m]

xi ∈ {0, 1}, ∀i ∈ [n]

zj ∈ {0, 1}, ∀j ∈ [m]

2

LP relaxation We replace the integral constraints xi, zj ∈ {0, 1} by 0 ≤ xi, zj ≤ 1, and solve the resulting
LP (in polynomial time). Let (x∗, z∗) denote the optimal IP solution which is integral and what we want to
approximate. Let (x̂∗, ẑ∗) denote the optimal LP solution which is fractional and what we have.

Fact 4. The IP optimum is at most the LP optimum. More precisely,

OPT =

m∑
j=1

z∗j ≤
m∑
j=1

ẑ∗j .

Randomized rounding We round the optimal LP solution x̂∗ to a valid integral solution by the following
randomized procedure.

Algorithm 2 Randomized rounding

Input: x̂∗ optimal LP solution
for each i ∈ [n] independently do

xi ← 1 with probability x̂∗i , and xi ← 0 with probability 1− x̂∗i . xi is a Bernoulli random variable
with mean x̂∗i
end for

return x

Lemma 5. For every clause cj of size k = kj, we have

Pr (cj is satisfied) ≥ βkẑ∗j

where βk = 1− (1− 1
k)k ≥ 1− 1

e .

Given Lemma 5, we are able to analyze the approximation ratio of our LP-based approximation algorithm.
For each j ∈ [m], let Yj be an indicator random variable for the event that clause cj is satisfied by the random
assignment x; namely, Yj = 1 if cj is satisfied and Yj = 0 if not. Let Y =

∑m
j=1 Yj be the number of satisfied

clauses. Then we have

EY =

m∑
j=1

EYj =

m∑
j=1

Pr (cj is satisfied)

≥
m∑
j=1

βkj
ẑ∗j (Lemma 5)

≥
(

1− 1

e

) m∑
j=1

ẑ∗j

≥
(

1− 1

e

) m∑
j=1

z∗j (Fact 4)

=

(
1− 1

e

)
OPT.

Therefore, the LP-based randomized approximation algorithm finds a truth assignment that satisfies at
least

(
1− 1

e

)
OPT clauses in expectation. This algorithm can also be derandomized using the method of

conditional probabilities.
It remains to show Lemma 5.

3

Proof of Lemma 5. Without loss of generality, we assume that the k variables in cj are x1, . . . , xk and they

are all in positive form; namely, cj = (x1 ∨ · · · ∨ xk). The corresponding LP constraint gives
∑k

i=1 x̂
∗
i ≥ ẑ∗j .

It follows that

Pr (cj is unsatisfied) = Pr (x1 = · · · = xk = 0)

=

k∏
i=1

(1− x̂∗i)

≤

(
1

k

k∑
i=1

(1− x̂∗i)

)k

(AM–GM Inequality)

=

(
1− 1

k

k∑
i=1

x̂∗i

)k

≤
(

1− 1

k
ẑ∗j

)k

(LP Constraint)

≤ 1− βkẑ∗j ,

where the last inequality follows from that (1− t
k)k ≤ 1− βkt for all t ∈ [0, 1]. The lemma then follows.

4 Better-of-Two Algorithm

In Section 2, we showed a simple approximation algorithm which finds a truth assignment such that the
number of satisfied clauses is at least 1

2OPT. In Section 3, we presented an LP-based algorithm such that
the number of satisfied clauses is at least

(
1− 1

e

)
OPT. In this section, we show that by simply combining

the two algorithms and choosing a better solution leads to a better approximation ratio of 3
4 .

Algorithm 3 Better-of-two algorithm

Input: F a CNF formula
x(1) ← solution from simple algorithm
x(2) ← solution from LP-based algorithm

return the better of x(1) and x(2)

Theorem 6. The better-of-two algorithm outputs a truth assignment satisfying at least 3
4OPT clauses in

expectation.

Proof. Let Y (1) =
∑m

j=1 Y
(1)
j be the number of satisfied clauses for the solution x(1) from the simple al-

gorithm, where Y
(1)
j is the indicator random variable for whether clause cj is satisfied. Similarly, Y (2) =∑m

j=1 Y
(2)
j be the number of satisfied clauses for the solution x(2) from the LP-based algorithm, where Y

(2)
j

is the indicator random variable for clause cj . Let Y = max{Y (1), Y (2)} be the number of satisfied clauses
for the better-of-two algorithm. From our analysis in Sections 2 and 3, we have

E
[
Y (1)

]
=

m∑
j=1

E[Y
(1)
j] =

m∑
j=1

(
1− 1

2kj

)
≥

m∑
j=1

(
1− 1

2kj

)
ẑ∗j ,

and E
[
Y (2)

]
=

m∑
j=1

E[Y
(2)
j] ≥

m∑
j=1

βkj ẑ
∗
j =

m∑
j=1

(
1−

(
1− 1

kj

)kj
)
ẑ∗j .

4

Therefore, we deduce that

EY = E
[
max

{
Y (1), Y (2)

}]
≥ E

[
1

2

(
Y (1) + Y (2)

)]
=

1

2

(
E
[
Y (1)

]
+ E

[
Y (2)

])
=

m∑
j=1

1

2

[(
1− 1

2kj

)
+

(
1−

(
1− 1

kj

)kj
)]

ẑ∗j

(i)

≥
m∑
j=1

3

4
ẑ∗j

≥ 3

4

m∑
j=1

z∗j

=
3

4
OPT,

where (i) follows from (
1− 1

2k

)
+

(
1−

(
1− 1

k

)k
)
≥ 3

2

for all k ∈ N+, with equality when k = 1 or 2.

5

	MAX-SAT Problem
	Simple Approximation Algorithm
	LP-Based Approximation Algorithm
	Better-of-Two Algorithm

