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1 MAX-SAT Problem

Consider the MAX-SAT problem (maximum satisfiability problem): Given a Boolean formula F' in CNF
(conjunctive normal form) with n variables z1,...,x, and m clauses c¢1, ..., ¢y, find a truth assignment to
the variables that maximizes the number of satisfied clauses.

Example 1. Consider a CNF formula
F = (1’1 \Y T3 \Y 1‘4) A (IEQ V I’g) AN (_LTQ) A\ (_‘1171 V o V I3 V I’4) AN ("SC4).

The truth assignment 1 = F, zo = F, z3 = T, x4 = F satisfies four clauses. It can be checked that no
assignment satisfies all five clauses.

MAX-SAT is clearly NP-hard, and so we aim for (randomized) approximation algorithms: Output an
assignment such that the number of satisfied clauses is at least o - OPT (in expectation), where o € [0,1] is
the approzimation ratio and OPT is the optimal value (i.e., the maximum number of satisfied clauses of an
assignment).

2 Simple Approximation Algorithm

Lemma 2. For a CNF formula F with m clauses, there exists an assignment satisfying at least m/2 clauses.
In fact, a random assignment satisfies at least m/2 clauses in expectation.

Proof. Consider a uniformly random truth assignment x, where for each 7 independently we set z; = T with
probability 1/2 and x; = F with probability 1/2. For each clause ¢;, let Y; be an indicator random variable
such that Y; = 1 if ¢; is satisfied by z, and Y; = 0 otherwise. Let ¥ = ZT:1 Y; be the number of satisfied
clauses. Notice that for every j, suppose the size of ¢; is k; > 1, and we have

1 1
EY; = Pr(c; is satisfied) = 1—% >1— 353

Therefore, by the linearity of expectation we have

- m

EY = EY; > —

SEy = )

j=1
as claimed. O

Lemma 2 gives a simple randomized approximation algorithm (i.e., outputting a random assignment)
such that the number of satisfied clauses is at least %OPT in expectation, since OPT < m.

Derandomization via the method of conditional probabilities Note that the guarantee of the simple
randomized approximation algorithm is to output an assignment satisfying at least m/2 clauses in expecta-
tion. Meanwhile, we hope to obtain an assignment satisfying m/2 clauses with high probability (say, with
probability 1 — § for any small § > 0). We will actually present a deterministic algorithm such that the



number of satisfying clauses is at least m/2 always (i.e., with probability 1). This is achieved by the method
of conditional probabilities.
By the law of total expectation, we have

EY =Pr(zy = T)E[Y|z; = T] + Pr(z; = F)E[Y|z; = F]
= & E[¥]er = T) + E[Y |1 = ).

The idea is as follows. Since EY > m/2, we know that either E[Y|zqy = T] > m/2 or E[Y|z; = F] > m/2. In
the former case, we should set 1 = T, and in the latter z1 = F. A key observation is that we can exactly
compute the two conditional expectations E[Y|z; = T| and E[Y|x; = F] in linear time by the linearity of
expectation, and hence we can determine the way to set x; since the larger one is at least m/2.

Algorithm 1 Derandomization of the simple algorithm for MAX-SAT
while 3 variable x whose truth value is not assigned do
Compute E[Y |z = T] and E[Y|z = F] where ¥ = number of satisfied clauses of a random assignment;
if EY|x=T| > E[Y|x = F] then
T
else >E[Y|z=T] <E[Y|z =F|
<+ F
end if
Simplify F' (remove x, satisfied clauses, and empty clauses)
end while

Algorithm 1 is deterministic and outputs an assignment satisfying at least m/2 clauses.

3 LP-Based Approximation Algorithm

IP for MAX-SAT We represent the MAX-SAT problem as an equivalent 0/1 IP in the following way.
We use 1 to represent T and 0 for F; hence for each i € [n], z; = 1 if x; is assigned T, and z; = 0 otherwise.
For each j € [m], let z; be the indicator variable for whether the clause ¢; is satisfied by the assignment or
not; namely, z; = 1 if ¢; is satisfied and z; = 0 otherwise. The objective function is clearly Z;nzl zj, the
number of satisfied clauses, which we want to maximize. For each clause c;, we add a corresponding linear
constraint in the following way. Let P; be the set of those variables that appear in positive form in ¢;, and
N; be the set of those in negative form. Then we add the constraint

i€ P; iEN;

Example 3. Suppose ¢4 = (23V-25VaerV-xs). Then P; = {3,7} and N; = {5, 8}, and we add the constraint
23+ (1—x5)+x7+ (1 —x8) > z4. Observe that ¢4 is unsatisfied if and only if 253 =1— 25 = a7 =1—25 =0,
in which case z, is forced to be 0.

We obtain an equivalent 0/1 IP for MAX-SAT.

max Z 2j (IP for MAX-SAT)
Jj=1

subject to Z x; + Z (1—x;) >z, Vjem]
i€ Pj i€N;

2 € {0,1}, Vi€ [n]
zj € {0,1}, Vje[m]



LP relaxation We replace the integral constraints z;, z; € {0,1} by 0 < z;,2; < 1, and solve the resulting
LP (in polynomial time). Let (z*, 2*) denote the optimal IP solution which is integral and what we want to
approximate. Let (*,2*) denote the optimal LP solution which is fractional and what we have.

Fact 4. The IP optimum is at most the LP optimum. More precisely,
m m
oPT=35 <35
j=1 j=1

Randomized rounding We round the optimal LP solution * to a valid integral solution by the following
randomized procedure.

Algorithm 2 Randomized rounding

Input: z* optimal LP solution
for each i € [n] independently do
x; < 1 with probability 27, and x; <— 0 with probability 1 — 2
with mean &}
end for
return =

£
K2

> x; is a Bernoulli random variable

Lemma 5. For every clause c; of size k = kj, we have
Pr (c; is satisfied) > Br2]

where B, =1—(1— 1)k >1-1.

Given Lemma 5, we are able to analyze the approximation ratio of our LP-based approximation algorithm.
For each j € [m], let Y; be an indicator random variable for the event that clause ¢; is satisfied by the random
assignment x; namely, Y; = 1 if ¢; is satisfied and Y; = 0 if not. Let Y = 27:1 Y; be the number of satisfied
clauses. Then we have

EY = ZEYJ = Z Pr (¢; is satisfied)

Jj=1 Jj=1

m
> Z Br; 25 (Lemma 5)

(-2)
> (1 - i) iz; (Fact 4)

Therefore, the LP-based randomized approximation algorithm finds a truth assignment that satisfies at
least (1 — %) OPT clauses in expectation. This algorithm can also be derandomized using the method of
conditional probabilities.

It remains to show Lemma 5.



Proof of Lemma 5. Without loss of generality, we assume that the k variables in ¢; are x1,...,z; and they
are all in positive form; namely, ¢; = (z1 V -+ V 2%). The corresponding LP constraint gives Zf:l Ty > 7.
It follows that

Pr(c; is unsatisfied) = Pr (z1 =--- =z, = 0)
k
=[Ia-an
i=1
1< ’
< (kz ; (1- i‘f)) (AM-GM Inequality)
k
1
i=1
1 \*
< <1 % AJ*) (LP Constraint)
S 1- ﬂk A;"a

where the last inequality follows from that (1 — £)* <1 — Byt for all t € [0,1]. The lemma then follows. [

4 Better-of-Two Algorithm

In Section 2, we showed a simple approximation algorithm which finds a truth assignment such that the
number of satisfied clauses is at least %OPT. In Section 3, we presented an LP-based algorithm such that
the number of satisfied clauses is at least (1 — %) OPT. In this section, we show that by simply combining

the two algorithms and choosing a better solution leads to a better approximation ratio of %.

Algorithm 3 Better-of-two algorithm
Input: F' a CNF formula
() + solution from simple algorithm
2 « solution from LP-based algorithm
return the better of (1) and z()

Theorem 6. The better-of-two algorithm outputs a truth assignment satisfying at least %OPT clauses in
expectation.

Proof. Let Y1) = PV Yj(l) be the number of satisfied clauses for the solution ") from the simple al-
gorithm, where Yj(l) is the indicator random variable for whether clause c; is satisfied. Similarly, y(® =

Z;ﬁ:l Yj(z) be the number of satisfied clauses for the solution 2(?) from the LP-based algorithm, where Yj(Q)

is the indicator random variable for clause c;. Let Y = max{Y () Y} be the number of satisfied clauses
for the better-of-two algorithm. From our analysis in Sections 2 and 3, we have

E[y0] = iE[Y}”] -y (1-55) = > (1-5) %

j=1 j=1
m m m kj
and E [Y@)] =N B> gz =Y (1 - (1 - 1) ) 2%
j=1 j=1 Jj=1 ki



Therefore, we deduce that

v

where (i) follows from

(s (-03))3

for all k € NT, with equality when k =1 or 2.
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