CSE 632: Analysis of Algorithms II: Randomized Algorithms Spring 2024

Lecture 4: Global Minimum Cut

Lecturer: Zongchen Chen

1 Global Min Cut Problem

Definition 1. Let G = (V, E) be a graph. A cut (S,V '\ 5) is a bipartition of V' where S C V. The cut-set
of a cut (S,V'\ S) is defined as

0(S)=ElS,V\S)={weFE:uecSveV\S}

Note that §(S) = §(V \ S). We consider the problem of finding a global min cut of a given graph.

Global min cut problem: Given a graph G = (V, E), find a cut (S,V \ S) where S # (), V which minimizes
16(5)]-
A closely related problem is the min s-t cut problem.

Min s-t cut problem: Given a graph G = (V, E) and two vertices s,t € V| find a cut (S, V' \ S) where s € S,
t € V'\ S which minimizes |6(.59)].

One can solve the min s-t cut problem using the max-flow min-cut theorem and any polynomial-time
algorithm for max s-t flow; the current fastest algorithm runs in O(m't°")) time. One can solve the global
min cut problem by solving n — 1 min s-t cut problems: If V= {vy,...,v,}, then we solve min v;-v; cut for
each ¢ = 2,...,n and output the best cut among these n — 1 cuts.

2 Edge Contraction

In the rest of this note, we consider multigraphs without self-loops, i.e., there are possibly multiple edges
between a pair of distinct vertices but no edges vv for v € V. For a multigraph G = (V, E) without self-loops,
denote the number of vertices by n = |V, and the number of edges by m = |E].

Definition 2 (Edge Contraction). For a multigraph G = (V, E) without self-loops and an edge e = {u, v} €
E, define G/e to be the graph resulted from contraction of e by:

(1) Replace u,v by a new vertex w;
(2) Replace every edge ux or vz where x € V' \ {u,v} by a new edge wzx.
Note that after the edge contraction, the new graph G/e is a multigraph without self-loops.
Observation 3. Suppose G = (V,E),e=wv € E, and G' = (V' E') = G/e.
(1) If |V| =mn, then |V/| =n —1;

(2) Cuts (S,V'\ S’) in G’ are in one-to-one correspondence to cuts (S,V \ S) in G where uwv ¢ §(9),
equivalently either {u,v} C S or {u,v} C V\S. Moreover, |d¢/(S’)| = |d¢(S)| under this correspondence.

Suppose (S*, V' \ §*) is a global min cut of G (note that there could be multiple global min cuts). Our
ideas are as follows.

1. If we know in advance an edge e ¢ §(S*) (i.e., either {u,v} C S or {u,v} C V' \ S), then it suffices to
solve global min cut on G/e, which is a smaller graph.

2. We do not know if any edge e ¢ 6(5*) or not, but we know (S*, V' \ S*) is a global min cut, so |6(5*)]
should be small; in particular, (we hope) a random edge e would satisfy e ¢ §(S™).

3. An algorithm can work as follows: in each step we pick a random edge and contract it, until two (super)
vertices a,b remain, and ({a}, {b}) would correspond to a cut (S, V \ S) back in the original graph G
by Observation 3.

3 Karger’s Algorithm

Algorithm 1 Karger’s min cut algorithm

Input: G = (V, E) a multigraph without self-loops

1: repeat
2: Choose an edge e € E uniformly at random,;
3: G+ GJe;

4: until |V| =2
return the cut corresponding to the final two vertices

Lemma 4. Let G = (V, E) be a multigraph without self-loops, and (S*,V \ S*) be a global min cut of G.
Then we have

Pr (Algorithm 1 outputs (S*,V \ S*)) >

S
()

Proof. Denote the sequence of edges chosen and contracted by Algorithm 1 as eq, ey, ..., e,_3; note that we
need to contract n — 2 edges to get down to two vertices. Observe that Algorithm 1 outputs (S*,V \ S*) if
and only if eg,e1,...,e,_3 ¢ 0(S*); this follows from Observation 3. By the chain rule, we have

Pr (Algorithm 1 outputs (S*,V '\ %))
= Pr(eg,e1,...,en—3 ¢ 6(S"))
Pr(co ¢ 5(S") Pr (e1 ¢ 5(5%) | o ¢ 5(5°) Pr (e2 ¢ 5(5°%) | eore1 ¢ 6(5")
- Pr(en—3 ¢ 0(S") | eg,e1,...,en—qa ¢ 0(S)). (1)

Let’s look at the first term:

Pr(en ¢ 6(5)) = 1~ Pr(ep € 6(5) =1~ 2)

where k = |6(S*)| and m = |E].

Fact 5. (1) The average degree of a graph G VE) is given by

=V,
J— l
n

<M

(2) Since ({v}, V\ {v}) is a cut of size deg(v) for all v € V, it holds

=)| < mi <d.
kE=16(5") < gél‘r/ldeg(v) <d

(8) Combining (1) and (2), we get
<

SN

k
m

[\

We deduce from Eq. (2) and Fact 5 that
2
Prieo ¢ 6(5") 21—~
For the second term, suppose eg ¢ 0(S*) is given and let G' = (V/,E’) = G/ey. Since ey ¢ §(S*)

we deduce from Observation 3 that [0g/ ((S*)")] = |0c(S*)| = k and ((S*)', V' \ (5*)') is a min cut of G'.
Recalling |V'| = n — 1 and letting m’ = |E’|, we deduce from Fact 5 that for any eg ¢ §(S*),

Pr (e ¢6(S*)|eo):1—%21—n21.
In particular,
Pr(er # 6(5°) | eo # 6(57) 21— ——.
More generally, for each i = 0,1,...,n — 3 we have
Pr(e; € 6(S*) | eo,e1,...,6i-1 ¢ 6(S*)) >1— n2—z

Back to Eq. (1), we get

2 2 2 2
Pr (Algorithm 1 * N> (1-2) (1= N) I (I
r (Algorithm 1 outputs (S,V\S))_(n)(—) (4)(3)

1
_n—2 n—3 2 1
T on n—1 4 3
_ 2 _ 1
n(n —1) (g)7
as claimed.]

Success probability. Lemma 4 shows that Algorithm 1 succeeds with probability at least Q(n=2). We
can boost the success probability by running Algorithm 1 for (’2’) -clogn times where ¢ > 0 is some constant,

and output the best cut among them. Then we have

(g)-clogn
Pr (none of (Z) - clog n runs output (S*,V'\ S*)) < (1 - (nl)> < e~clogn _ i

2 ne
Thus, the success probability is
n N N 1
Pr (at least one of (2) - clogn runs outputs (S*, V' \ S)) >1——.
nC

This means that to guarantee a success probability at least 1 — 1/poly(n), it suffices to run Algorithm 1 for
O(n?logn) times.

Running time. Using, e.g., the adjacency matrix representation, every edge contraction takes O(n) time.
Thus, each run of Algorithm 1 takes O(n?) time. The overall running time to get success probability at least
1 — 1/poly(n) is O(n*logn).

4 Karger—Stein Algorithm

Looking closer at Karger’s algorithm (Algorithm 1), we notice that initial edge contractions are likely correct
(meaning e ¢ §(5*)), for example,
2 2
Pr(eg ¢ 6(S*))>1—— and Pr(e; ¢6(5%)|eo ¢ d(S*)>1— —7
n n—
Meanwhile, later edge contractions are much less likely to be correct, for example,
* * 2 * * 1
Pr(e,—4 ¢ 6(S™) | eo,€1,...,en_5 ¢ 5(S)) > 1 and Pr(e,—3 ¢ 46(S%) | e €1,...,en—a ¢ 6(S")) > 3
Thus, instead of running the whole Algorithm 1 for multiple times, a better way is to run initial edge
contractions fewer times while later contractions more times. We calculate the probability that the min cut
(8*,V'\ §*) survives after edge contractions until ¢ vertices remain:

Pr((S*,V \ ") survives down to ¢ vertices)
= Pr(eg,e1,...,6n—v—1 ¢ 0(S¥))

2 2 2 2
> (12 _ N L -z
(=2 (-5) (-) (- 7)
n—2 n—3 ¢ 1-1

n n—1 (+2 (+1

If we choose ¢ ~ n/v/2, then this probability is at least 1/2. This means, after applying random edge
contractions until n/v/2 vertices are left, (S*,V'\ $*) remains a global min cut with probability at least 1/2.

Algorithm 2 FastMinCut(G)

for i = 1,2 independently do

G; <+ Apply random edge contractions to G until n/v/2 vertices remain;
end for

return min{FastMinCut(G1), FastMinCut(G2)}

Success probability. Define P(n) to be the probability of success of Algorithm 2 on any n-vertex graph.
Note that Algorithm 2 fails to output a global min cut if and only if both attempts (i.e., G; and G3) fail.
For each i = 1,2, with probability at least 1/2 the cut (S*,V \ S*) remains to be a global min on G;, and
with probability at least P(n/v/2) the recursive call FastMinCut(G;) outputs a global min cut. Hence, we

have the recursion
1 n 2
1-Pn)<|(1—=P|—= .
= (1-37(5))

Solving the recursion gives P(n) = Q(1/logn).
Running time. The running time of Algorithm 2 satisfies the recursion

) + 0(n?).

V2

Therefore, T'(n) = O(n?logn). To get success probability at least 1 — 1/poly(n), we run Algorithm 2 for
O(log® n) times and the overall running time is O(n? log® n).

T(n) = 2T (

	Global Min Cut Problem
	Edge Contraction
	Karger's Algorithm
	Karger–Stein Algorithm

