
CSE 632: Analysis of Algorithms II: Randomized Algorithms Spring 2024

Lecture 4: Global Minimum Cut
Lecturer: Zongchen Chen

1 Global Min Cut Problem

Definition 1. Let G = (V,E) be a graph. A cut (S, V \ S) is a bipartition of V where S ⊆ V . The cut-set
of a cut (S, V \ S) is defined as

δ(S) = E(S, V \ S) = {uv ∈ E : u ∈ S, v ∈ V \ S}.

Note that δ(S) = δ(V \ S). We consider the problem of finding a global min cut of a given graph.

Global min cut problem: Given a graph G = (V,E), find a cut (S, V \ S) where S 6= ∅, V which minimizes
|δ(S)|.

A closely related problem is the min s-t cut problem.

Min s-t cut problem: Given a graph G = (V,E) and two vertices s, t ∈ V , find a cut (S, V \ S) where s ∈ S,
t ∈ V \ S which minimizes |δ(S)|.

One can solve the min s-t cut problem using the max-flow min-cut theorem and any polynomial-time
algorithm for max s-t flow; the current fastest algorithm runs in O(m1+o(1)) time. One can solve the global
min cut problem by solving n− 1 min s-t cut problems: If V = {v1, . . . , vn}, then we solve min v1-vi cut for
each i = 2, . . . , n and output the best cut among these n− 1 cuts.

2 Edge Contraction

In the rest of this note, we consider multigraphs without self-loops, i.e., there are possibly multiple edges
between a pair of distinct vertices but no edges vv for v ∈ V . For a multigraph G = (V,E) without self-loops,
denote the number of vertices by n = |V |, and the number of edges by m = |E|.

Definition 2 (Edge Contraction). For a multigraph G = (V,E) without self-loops and an edge e = {u, v} ∈
E, define G/e to be the graph resulted from contraction of e by:

(1) Replace u, v by a new vertex w;

(2) Replace every edge ux or vx where x ∈ V \ {u, v} by a new edge wx.

Note that after the edge contraction, the new graph G/e is a multigraph without self-loops.

Observation 3. Suppose G = (V,E), e = uv ∈ E, and G′ = (V ′, E′) = G/e.

(1) If |V | = n, then |V ′| = n− 1;

(2) Cuts (S′, V ′ \ S′) in G′ are in one-to-one correspondence to cuts (S, V \ S) in G where uv /∈ δ(S),
equivalently either {u, v} ⊆ S or {u, v} ⊆ V \S. Moreover, |δG′(S′)| = |δG(S)| under this correspondence.

Suppose (S∗, V \ S∗) is a global min cut of G (note that there could be multiple global min cuts). Our
ideas are as follows.

1. If we know in advance an edge e /∈ δ(S∗) (i.e., either {u, v} ⊆ S or {u, v} ⊆ V \ S), then it suffices to
solve global min cut on G/e, which is a smaller graph.

1

2. We do not know if any edge e /∈ δ(S∗) or not, but we know (S∗, V \ S∗) is a global min cut, so |δ(S∗)|
should be small; in particular, (we hope) a random edge e would satisfy e /∈ δ(S∗).

3. An algorithm can work as follows: in each step we pick a random edge and contract it, until two (super)
vertices a, b remain, and ({a}, {b}) would correspond to a cut (S, V \ S) back in the original graph G
by Observation 3.

3 Karger’s Algorithm

Algorithm 1 Karger’s min cut algorithm

Input: G = (V,E) a multigraph without self-loops
1: repeat
2: Choose an edge e ∈ E uniformly at random;
3: G← G/e;
4: until |V | = 2

return the cut corresponding to the final two vertices

Lemma 4. Let G = (V,E) be a multigraph without self-loops, and (S∗, V \ S∗) be a global min cut of G.
Then we have

Pr (Algorithm 1 outputs (S∗, V \ S∗)) ≥ 1(
n
2

) .
Proof. Denote the sequence of edges chosen and contracted by Algorithm 1 as e0, e1, . . . , en−3; note that we
need to contract n− 2 edges to get down to two vertices. Observe that Algorithm 1 outputs (S∗, V \ S∗) if
and only if e0, e1, . . . , en−3 /∈ δ(S∗); this follows from Observation 3. By the chain rule, we have

Pr (Algorithm 1 outputs (S∗, V \ S∗))
= Pr (e0, e1, . . . , en−3 /∈ δ(S∗))
= Pr (e0 /∈ δ(S∗)) Pr (e1 /∈ δ(S∗) | e0 /∈ δ(S∗)) Pr (e2 /∈ δ(S∗) | e0, e1 /∈ δ(S∗))
· · ·Pr (en−3 /∈ δ(S∗) | e0, e1, . . . , en−4 /∈ δ(S∗)) . (1)

Let’s look at the first term:

Pr (e0 /∈ δ(S∗)) = 1− Pr (e0 ∈ δ(S∗)) = 1− k

m
, (2)

where k = |δ(S∗)| and m = |E|.

Fact 5. (1) The average degree of a graph G = (V,E) is given by

d̄ =
1

n

∑
v∈V

deg(v) =
2m

n
.

(2) Since ({v}, V \ {v}) is a cut of size deg(v) for all v ∈ V , it holds

k = |δ(S∗)| ≤ min
v∈V

deg(v) ≤ d̄.

(3) Combining (1) and (2), we get
k

m
≤ 2

n
.

2

We deduce from Eq. (2) and Fact 5 that

Pr (e0 /∈ δ(S∗)) ≥ 1− 2

n
.

For the second term, suppose e0 /∈ δ(S∗) is given and let G′ = (V ′, E′) = G/e0. Since e0 /∈ δ(S∗)
we deduce from Observation 3 that |δG′((S∗)′)| = |δG(S∗)| = k and ((S∗)′, V ′ \ (S∗)′) is a min cut of G′.
Recalling |V ′| = n− 1 and letting m′ = |E′|, we deduce from Fact 5 that for any e0 /∈ δ(S∗),

Pr (e1 /∈ δ(S∗) | e0) = 1− k

m′
≥ 1− 2

n− 1
.

In particular,

Pr (e1 /∈ δ(S∗) | e0 /∈ δ(S∗)) ≥ 1− 2

n− 1
.

More generally, for each i = 0, 1, . . . , n− 3 we have

Pr (ei /∈ δ(S∗) | e0, e1, . . . , ei−1 /∈ δ(S∗)) ≥ 1− 2

n− i
.

Back to Eq. (1), we get

Pr (Algorithm 1 outputs (S∗, V \ S∗)) ≥
(

1− 2

n

)(
1− 2

n− 1

)
· · ·
(

1− 2

4

)(
1− 2

3

)
=
n− 2

n
· n− 3

n− 1
· · · · · 2

4
· 1

3

=
2

n(n− 1)
=

1(
n
2

) ,
as claimed.

Success probability. Lemma 4 shows that Algorithm 1 succeeds with probability at least Ω(n−2). We
can boost the success probability by running Algorithm 1 for

(
n
2

)
· c log n times where c > 0 is some constant,

and output the best cut among them. Then we have

Pr

(
none of

(
n

2

)
· c log n runs output (S∗, V \ S∗)

)
≤

(
1− 1(

n
2

))(n
2)·c logn

≤ e−c logn =
1

nc
.

Thus, the success probability is

Pr

(
at least one of

(
n

2

)
· c log n runs outputs (S∗, V \ S∗)

)
≥ 1− 1

nc
.

This means that to guarantee a success probability at least 1− 1/poly(n), it suffices to run Algorithm 1 for
O(n2 log n) times.

Running time. Using, e.g., the adjacency matrix representation, every edge contraction takes O(n) time.
Thus, each run of Algorithm 1 takes O(n2) time. The overall running time to get success probability at least
1− 1/poly(n) is O(n4 log n).

3

4 Karger–Stein Algorithm

Looking closer at Karger’s algorithm (Algorithm 1), we notice that initial edge contractions are likely correct
(meaning e /∈ δ(S∗)), for example,

Pr (e0 /∈ δ(S∗)) ≥ 1− 2

n
and Pr (e1 /∈ δ(S∗) | e0 /∈ δ(S∗)) ≥ 1− 2

n− 1
.

Meanwhile, later edge contractions are much less likely to be correct, for example,

Pr (en−4 /∈ δ(S∗) | e0, e1, . . . , en−5 /∈ δ(S∗)) ≥
2

4
and Pr (en−3 /∈ δ(S∗) | e0, e1, . . . , en−4 /∈ δ(S∗)) ≥

1

3
.

Thus, instead of running the whole Algorithm 1 for multiple times, a better way is to run initial edge
contractions fewer times while later contractions more times. We calculate the probability that the min cut
(S∗, V \ S∗) survives after edge contractions until ` vertices remain:

Pr ((S∗, V \ S∗) survives down to ` vertices)

= Pr (e0, e1, . . . , en−`−1 /∈ δ(S∗))

≥
(

1− 2

n

)(
1− 2

n− 1

)
· · ·
(

1− 2

`+ 2

)(
1− 2

`+ 1

)
=
n− 2

n
· n− 3

n− 1
· · · · · `

`+ 2
· `− 1

`+ 1

=
`(`− 1)

n(n− 1)
=

(
`
2

)(
n
2

) .
If we choose ` ≈ n/

√
2, then this probability is at least 1/2. This means, after applying random edge

contractions until n/
√

2 vertices are left, (S∗, V \S∗) remains a global min cut with probability at least 1/2.

Algorithm 2 FastMinCut(G)

for i = 1, 2 independently do
Gi ← Apply random edge contractions to G until n/

√
2 vertices remain;

end for
return min{FastMinCut(G1),FastMinCut(G2)}

Success probability. Define P (n) to be the probability of success of Algorithm 2 on any n-vertex graph.
Note that Algorithm 2 fails to output a global min cut if and only if both attempts (i.e., G1 and G2) fail.
For each i = 1, 2, with probability at least 1/2 the cut (S∗, V \ S∗) remains to be a global min on Gi, and
with probability at least P (n/

√
2) the recursive call FastMinCut(Gi) outputs a global min cut. Hence, we

have the recursion

1− P (n) ≤
(

1− 1

2
P

(
n√
2

))2

.

Solving the recursion gives P (n) = Ω(1/ log n).

Running time. The running time of Algorithm 2 satisfies the recursion

T (n) = 2T

(
n√
2

)
+O(n2).

Therefore, T (n) = O(n2 log n). To get success probability at least 1 − 1/poly(n), we run Algorithm 2 for
O(log2 n) times and the overall running time is O(n2 log3 n).

4

	Global Min Cut Problem
	Edge Contraction
	Karger's Algorithm
	Karger–Stein Algorithm

