CSE 632: Analysis of Algorithms II: Randomized Algorithms

Spring 2024

Lecture 4: Global Minimum Cut

Lecturer: Zongchen Chen

1 Global Min Cut Problem

Definition 1. Let G = (V, E) be a graph. A *cut* $(S, V \setminus S)$ is a bipartition of V where $S \subseteq V$. The *cut-set* of a cut $(S, V \setminus S)$ is defined as

$$\delta(S) = E(S, V \setminus S) = \{uv \in E : u \in S, v \in V \setminus S\}.$$

Note that $\delta(S) = \delta(V \setminus S)$. We consider the problem of finding a global min cut of a given graph.

Global min cut problem: Given a graph G = (V, E), find a cut $(S, V \setminus S)$ where $S \neq \emptyset, V$ which minimizes $|\delta(S)|$.

A closely related problem is the min s-t cut problem.

Min s-t cut problem: Given a graph G = (V, E) and two vertices $s, t \in V$, find a cut $(S, V \setminus S)$ where $s \in S$, $t \in V \setminus S$ which minimizes $|\delta(S)|$.

One can solve the min s-t cut problem using the max-flow min-cut theorem and any polynomial-time algorithm for max s-t flow; the current fastest algorithm runs in $O(m^{1+o(1)})$ time. One can solve the global min cut problem by solving n-1 min s-t cut problems: If $V = \{v_1, \ldots, v_n\}$, then we solve min v_1 - v_i cut for each $i = 2, \ldots, n$ and output the best cut among these n-1 cuts.

2 Edge Contraction

In the rest of this note, we consider multigraphs without self-loops, i.e., there are possibly multiple edges between a pair of distinct vertices but no edges vv for $v \in V$. For a multigraph G = (V, E) without self-loops, denote the number of vertices by n = |V|, and the number of edges by m = |E|.

Definition 2 (Edge Contraction). For a multigraph G = (V, E) without self-loops and an edge $e = \{u, v\} \in E$, define G/e to be the graph resulted from contraction of e by:

- (1) Replace u, v by a new vertex w;
- (2) Replace every edge ux or vx where $x \in V \setminus \{u, v\}$ by a new edge wx.

Note that after the edge contraction, the new graph G/e is a multigraph without self-loops.

Observation 3. Suppose G = (V, E), $e = uv \in E$, and G' = (V', E') = G/e.

- (1) If |V| = n, then |V'| = n 1;
- (2) Cuts $(S', V' \setminus S')$ in G' are in one-to-one correspondence to cuts $(S, V \setminus S)$ in G where $uv \notin \delta(S)$, equivalently either $\{u, v\} \subseteq S$ or $\{u, v\} \subseteq V \setminus S$. Moreover, $|\delta_{G'}(S')| = |\delta_G(S)|$ under this correspondence.

Suppose $(S^*, V \setminus S^*)$ is a global min cut of G (note that there could be multiple global min cuts). Our ideas are as follows.

1. If we know in advance an edge $e \notin \delta(S^*)$ (i.e., either $\{u, v\} \subseteq S$ or $\{u, v\} \subseteq V \setminus S$), then it suffices to solve global min cut on G/e, which is a smaller graph.

- 2. We do not know if any edge $e \notin \delta(S^*)$ or not, but we know $(S^*, V \setminus S^*)$ is a global min cut, so $|\delta(S^*)|$ should be small; in particular, (we hope) a random edge e would satisfy $e \notin \delta(S^*)$.
- 3. An algorithm can work as follows: in each step we pick a random edge and contract it, until two (super) vertices a, b remain, and ($\{a\}, \{b\}$) would correspond to a cut $(S, V \setminus S)$ back in the original graph G by Observation 3.

3 Karger's Algorithm

Algorithm 1 Karger's min cut algorithm

Input: G = (V, E) a multigraph without self-loops

- 1: repeat
- 2: Choose an edge $e \in E$ uniformly at random;
- 3: $G \leftarrow G/e$;
- 4: until |V|=2

return the cut corresponding to the final two vertices

Lemma 4. Let G = (V, E) be a multigraph without self-loops, and $(S^*, V \setminus S^*)$ be a global min cut of G. Then we have

$$\Pr\left(Algorithm\ 1\ outputs\ (S^*, V\setminus S^*)\right) \geq \frac{1}{\binom{n}{2}}.$$

Proof. Denote the sequence of edges chosen and contracted by Algorithm 1 as $e_0, e_1, \ldots, e_{n-3}$; note that we need to contract n-2 edges to get down to two vertices. Observe that Algorithm 1 outputs $(S^*, V \setminus S^*)$ if and only if $e_0, e_1, \ldots, e_{n-3} \notin \delta(S^*)$; this follows from Observation 3. By the chain rule, we have

$$\Pr (\text{Algorithm 1 outputs } (S^*, V \setminus S^*))
= \Pr (e_0, e_1, \dots, e_{n-3} \notin \delta(S^*))
= \Pr (e_0 \notin \delta(S^*)) \Pr (e_1 \notin \delta(S^*) \mid e_0 \notin \delta(S^*)) \Pr (e_2 \notin \delta(S^*) \mid e_0, e_1 \notin \delta(S^*))
\cdots \Pr (e_{n-3} \notin \delta(S^*) \mid e_0, e_1, \dots, e_{n-4} \notin \delta(S^*)).$$
(1)

Let's look at the first term:

$$\Pr(e_0 \notin \delta(S^*)) = 1 - \Pr(e_0 \in \delta(S^*)) = 1 - \frac{k}{m},\tag{2}$$

where $k = |\delta(S^*)|$ and m = |E|.

Fact 5. (1) The average degree of a graph G = (V, E) is given by

$$\bar{d} = \frac{1}{n} \sum_{v \in V} \deg(v) = \frac{2m}{n}.$$

(2) Since $(\{v\}, V \setminus \{v\})$ is a cut of size deg(v) for all $v \in V$, it holds

$$k = |\delta(S^*)| \le \min_{v \in V} \deg(v) \le \bar{d}.$$

(3) Combining (1) and (2), we get

$$\frac{k}{m} \le \frac{2}{n}$$
.

We deduce from Eq. (2) and Fact 5 that

$$\Pr\left(e_0 \notin \delta(S^*)\right) \ge 1 - \frac{2}{n}.$$

For the second term, suppose $e_0 \notin \delta(S^*)$ is given and let $G' = (V', E') = G/e_0$. Since $e_0 \notin \delta(S^*)$ we deduce from Observation 3 that $|\delta_{G'}((S^*)')| = |\delta_G(S^*)| = k$ and $((S^*)', V' \setminus (S^*)')$ is a min cut of G'. Recalling |V'| = n - 1 and letting m' = |E'|, we deduce from Fact 5 that for any $e_0 \notin \delta(S^*)$,

$$\Pr(e_1 \notin \delta(S^*) \mid e_0) = 1 - \frac{k}{m'} \ge 1 - \frac{2}{n-1}.$$

In particular,

$$\Pr(e_1 \notin \delta(S^*) \mid e_0 \notin \delta(S^*)) \ge 1 - \frac{2}{n-1}.$$

More generally, for each i = 0, 1, ..., n - 3 we have

$$\Pr(e_i \notin \delta(S^*) \mid e_0, e_1, \dots, e_{i-1} \notin \delta(S^*)) \ge 1 - \frac{2}{n-i}.$$

Back to Eq. (1), we get

$$\begin{aligned} \Pr\left(\text{Algorithm 1 outputs } (S^*, V \setminus S^*) \right) &\geq \left(1 - \frac{2}{n} \right) \left(1 - \frac{2}{n-1} \right) \cdots \left(1 - \frac{2}{4} \right) \left(1 - \frac{2}{3} \right) \\ &= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \cdots \cdot \frac{2}{4} \cdot \frac{1}{3} \\ &= \frac{2}{n(n-1)} = \frac{1}{\binom{n}{2}}, \end{aligned}$$

as claimed. \Box

Success probability. Lemma 4 shows that Algorithm 1 succeeds with probability at least $\Omega(n^{-2})$. We can boost the success probability by running Algorithm 1 for $\binom{n}{2} \cdot c \log n$ times where c > 0 is some constant, and output the best cut among them. Then we have

$$\Pr\left(\text{none of }\binom{n}{2} \cdot c \log n \text{ runs output } (S^*, V \setminus S^*)\right) \leq \left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2} \cdot c \log n} \leq e^{-c \log n} = \frac{1}{n^c}.$$

Thus, the success probability is

$$\Pr\left(\text{at least one of } \binom{n}{2} \cdot c \log n \text{ runs outputs } (S^*, V \setminus S^*)\right) \geq 1 - \frac{1}{n^c}.$$

This means that to guarantee a success probability at least 1 - 1/poly(n), it suffices to run Algorithm 1 for $O(n^2 \log n)$ times.

Running time. Using, e.g., the adjacency matrix representation, every edge contraction takes O(n) time. Thus, each run of Algorithm 1 takes $O(n^2)$ time. The overall running time to get success probability at least 1 - 1/poly(n) is $O(n^4 \log n)$.

4 Karger-Stein Algorithm

Looking closer at Karger's algorithm (Algorithm 1), we notice that initial edge contractions are likely correct (meaning $e \notin \delta(S^*)$), for example,

$$\Pr(e_0 \notin \delta(S^*)) \ge 1 - \frac{2}{n}$$
 and $\Pr(e_1 \notin \delta(S^*) \mid e_0 \notin \delta(S^*)) \ge 1 - \frac{2}{n-1}$.

Meanwhile, later edge contractions are much less likely to be correct, for example,

$$\Pr\left(e_{n-4} \notin \delta(S^*) \mid e_0, e_1, \dots, e_{n-5} \notin \delta(S^*)\right) \ge \frac{2}{4} \quad \text{and} \quad \Pr\left(e_{n-3} \notin \delta(S^*) \mid e_0, e_1, \dots, e_{n-4} \notin \delta(S^*)\right) \ge \frac{1}{3}.$$

Thus, instead of running the whole Algorithm 1 for multiple times, a better way is to run initial edge contractions fewer times while later contractions more times. We calculate the probability that the min cut $(S^*, V \setminus S^*)$ survives after edge contractions until ℓ vertices remain:

$$\Pr\left((S^*, V \setminus S^*) \text{ survives down to } \ell \text{ vertices}\right)$$

$$= \Pr\left(e_0, e_1, \dots, e_{n-\ell-1} \notin \delta(S^*)\right)$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{\ell+2}\right) \left(1 - \frac{2}{\ell+1}\right)$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdots \frac{\ell}{\ell+2} \cdot \frac{\ell-1}{\ell+1}$$

$$= \frac{\ell(\ell-1)}{n(n-1)} = \frac{\binom{\ell}{2}}{\binom{n}{2}}.$$

If we choose $\ell \approx n/\sqrt{2}$, then this probability is at least 1/2. This means, after applying random edge contractions until $n/\sqrt{2}$ vertices are left, $(S^*, V \setminus S^*)$ remains a global min cut with probability at least 1/2.

Algorithm 2 FastMinCut(G)

for i = 1, 2 independently do

 $G_i \leftarrow \text{Apply random edge contractions to } G \text{ until } n/\sqrt{2} \text{ vertices remain;}$

end for

return min{FastMinCut(G_1), FastMinCut(G_2)}

Success probability. Define P(n) to be the probability of success of Algorithm 2 on any n-vertex graph. Note that Algorithm 2 fails to output a global min cut if and only if both attempts (i.e., G_1 and G_2) fail. For each i = 1, 2, with probability at least 1/2 the cut $(S^*, V \setminus S^*)$ remains to be a global min on G_i , and with probability at least $P(n/\sqrt{2})$ the recursive call FastMinCut (G_i) outputs a global min cut. Hence, we have the recursion

$$1 - P(n) \le \left(1 - \frac{1}{2}P\left(\frac{n}{\sqrt{2}}\right)\right)^2.$$

Solving the recursion gives $P(n) = \Omega(1/\log n)$.

Running time. The running time of Algorithm 2 satisfies the recursion

$$T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + O(n^2).$$

Therefore, $T(n) = O(n^2 \log n)$. To get success probability at least 1 - 1/poly(n), we run Algorithm 2 for $O(\log^2 n)$ times and the overall running time is $O(n^2 \log^3 n)$.