Spring 2024

Lecture 3: Expectation and Variance

Lecturer: Zongchen Chen

We shall only consider real-valued discrete random variables.

1 Expectation

Definition 1 (Expectation). The expectation of a random variable X is defined as

$$\mathbb{E}[X] = \sum_{x \in \Omega} \Pr(X = x) \cdot x = \sum_{x \in \Omega} p(x) \cdot x.$$

If Ω is countably infinite, the expectation exists only when the infinite sum given above converges absolutely.

Example 2. Toss a fair coin. Let X = 1 if we see a head, and X = 0 otherwise. Then $\mathbb{E}[X] = 1/2$.

Lemma 3. Suppose X is a discrete random variable valued in $\mathbb{N} = \{0, 1, 2, \dots\}$. Then we have

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} \Pr(X \ge k).$$

Example 4. Let X be the number of tosses of a fair coin until we see a head. The space is $\Omega = \mathbb{N}^+ = \{1, 2, \dots\}$, and the PMF is $p(k) = 2^{-k}$ for each $k \in \mathbb{N}^+$. Then we deduce from Lemma 3 that

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} \Pr(X \ge k) = \sum_{k=1}^{\infty} \frac{1}{2^{k-1}} = 2.$$

Lemma 5 (Linearity of Expectation). Let X, Y be random variables and $a \in \mathbb{R}$ be a constant.

- $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$;
- $\mathbb{E}[aX] = a\mathbb{E}[X]$.

Example 6. Toss a fair coin. Let X = 1 if we see a head, and X = 0 otherwise. For the same coin toss, let Y = 0 if we see a head, and Y = 1 otherwise. Hence, X and Y are *not* independent, and $\mathbb{E}[X] = \mathbb{E}[Y] = 1/2$. We have

$$\mathbb{E}[X+Y] = \frac{1}{2}(1+0) + \frac{1}{2}(0+1) = 1;$$

$$\mathbb{E}[XY] = \frac{1}{2}(1\times 0) + \frac{1}{2}(0\times 1) = 0.$$

Hence, $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ but $\mathbb{E}[XY] \neq \mathbb{E}[X]\mathbb{E}[Y]$.

Let X, Y be two random variables. Suppose the *joint distribution* of (X, Y) has PMF $p: \Omega \to [0, 1]$ where $\Omega = \Omega_X \times \Omega_Y$. Then the marginal distribution of X has PMF $p_X: \Omega_X \to [0, 1]$ given by

$$p_X(x) = \sum_{y \in \Omega_Y} p(x, y), \quad \forall x \in \Omega_X.$$

Similarly, the marginal distribution of Y has PMF $p_Y: \Omega_Y \to [0,1]$ given by

$$p_Y(y) = \sum_{x \in \Omega_X} p(x, y), \quad \forall y \in \Omega_Y.$$

Definition 7 (Independent Random Variables). Two random variables X and Y are said to be *independent* if

$$p(x,y) = p_X(x)p_Y(y), \quad \forall x \in \Omega_X \text{ and } y \in \Omega_Y.$$

Lemma 8. If two random variables X and Y are independent, then

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$$

Definition 9 (Conditional Expectation). The expectation of a random variable X conditioned on an event E is defined as

$$\mathbb{E}[X \mid E] = \sum_{x \in \Omega} \Pr(X = x \mid E) \cdot x.$$

In particular, for the event $E = \{Y = y\}$ where Y is another random variable,

$$\mathbb{E}[X \mid Y = y] = \sum_{x \in \Omega} \Pr(X = x \mid Y = y) \cdot x.$$

Furthermore, we view $\mathbb{E}[X \mid Y]$ as a function of Y, which is a random variable whose value depends on the value of Y; namely, if we define $g(y) = \mathbb{E}[X \mid Y = y]$ then $\mathbb{E}[X \mid Y] = g(Y)$.

Theorem 10 (Law of Total Expectation). Let X, Y be random variables and E be an event with $Pr(E) \in (0,1)$.

- $\mathbb{E}[X] = \Pr(E) \mathbb{E}[X \mid E] + \Pr(E^{\mathsf{c}}) \mathbb{E}[X \mid E^{\mathsf{c}}];$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]].$

Example 11. Let X be the number of tosses of a fair coin until we see a head. Then we have

$$\mathbb{E}[X] = \Pr(X = 1) \mathbb{E}[X \mid X = 1] + \Pr(X \ge 2) \mathbb{E}[X \mid X \ge 2].$$

Since $\mathbb{E}[X] = 2$, $\Pr(X = 1) = 1/2$, $\Pr(X \ge 2) = 1/2$, and $\mathbb{E}[X \mid X = 1] = 1$, we deduce that $\mathbb{E}[X \mid X \ge 2] = 3$

2 Variance

Definition 12 (Variance). The variance of a random variable X is defined as

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

If Ω is countably infinite, the variance may not exist.

Lemma 13. If two random variables X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Bernoulli distribution: The distribution of the outcome of tossing a biased coin.

- Parameter: $p \in [0, 1]$;
- PMF: Pr(X = 1) = p and Pr(X = 0) = 1 p;
- Expectation: $\mathbb{E}[X] = p$;
- Variance: Var(X) = p(1-p).

Binomial distribution: The distribution of the number of heads when tossing a biased coin for a given number of times. If X has the binomial distribution with parameters $n \in \mathbb{N}^+$ and $p \in [0,1]$, then it can be written as

$$X = \sum_{k=1}^{n} X_k,$$

where X_1, \ldots, X_n are i.i.d. Bernoulli random variables with parameter p. Here, "i.i.d." means that these random variables are *independent and identically distributed*; i.e., each random variable has the same probability distribution as the others and all are mutually independent.

- Parameters: $n \in \mathbb{N}^+$, $p \in [0, 1]$;
- PMF: $Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ for $k \in \{0, 1, \dots, n\}$;
- Expectation: $\mathbb{E}[X] = np$;
- Variance: Var(X) = np(1-p).

Geometric distribution: The distribution of the number of tosses of a biased coin until we see a head.

- Parameter: $p \in (0, 1]$;
- PMF: $Pr(X = k) = (1 p)^{k-1}p$ for $k \in \mathbb{N}^+$;
- Expectation: $\mathbb{E}[X] = 1/p$;
- Variance: $Var(X) = (1-p)/p^2$.