
CSE 632: Analysis of Algorithms II: Randomized Algorithms Spring 2024

Lecture 1: Examples of Randomized Algorithms
Lecturer: Zongchen Chen

1 Maximum Cut

Let G = (V,E) be a graph. For a subset S ⊆ V of vertices, the cut set is defined as

E(S, V \ S) = {uv ∈ E : u ∈ S, v ∈ V \ S}.

The max cut of G is defined as

max-cut(G) = max
S⊆V
|E(S, V \ S)|.

Finding the max cut is NP hard. However, one can show that the max cut always contains at least half of
the edges, using a randomized algorithm.

Lemma 1. For every graph G = (V,E), it holds

max-cut(G) ≥ |E|
2

. (1)

Proof. We prove the lemma by finding a subset S ⊆ V such that |E(S, V \S)| ≥ |E|/2. Instead of constructing
S explicitly or deterministically, we consider a randomized algorithm which just outputs a subset S ⊆ V
uniformly at random. More precisely, S ⊆ V is constructed randomly as follows.

Algorithm 1 Generating S ⊆ V uniformly at random

1: S ← ∅;
2: for all v ∈ V independently do
3: Flip a fair coin;
4: if Head then
5: S ← S ∪ {v};
6: else
7: S ← S;
8: end if
9: end for

return S

We show that

E[|E(S, V \ S)|] =
|E|
2

. (2)

Observe that, Eq. (2) implies the existence of a subset S ⊆ V such that |E(S, V \ S)| ≥ |E|/2, since the
“maximum value” must be no less than the “average value”:

max-cut(G) = max
S⊆V
|E(S, V \ S)| ≥ E[|E(S, V \ S)|] =

|E|
2

.

We now prove Eq. (2). For each edge e ∈ E, define an indicator random variable by

Xe =

{
1, if e ∈ E(S, V \ S);

0, otherwise.

1

For each e = uv ∈ E, observe that Xe is a Bernoulli random variable with expectation

E[Xe] = Pr(Xe = 1) = Pr (e ∈ E(S, V \ S))

= Pr (u ∈ S, v /∈ S) + Pr (u /∈ S, v ∈ S) =
1

2
· 1

2
+

1

2
· 1

2
=

1

2
.

It follows that

E[|E(S, V \ S)|] = E

[∑
e∈E

Xe

]
=
∑
e∈E

E[Xe] =
∑
e∈E

1

2
=
|E|
2

,

where we use the linearity of expectation: for two random variables X and Y (they can be dependent) it
holds E[X + Y] = E[X] + E[Y].

2 Coupling

Consider the process of generating a uniformly random subset S ⊆ V = {1, 2, . . . , 10} as described in
Algorithm 1. Let S be the (random) output of Algorithm 1. Now consider the same process but with a
biased coin instead of a fair one; more precisely, suppose Pr(Head) = 0.51 so that each element is included
in S independently with a larger probability 0.51. Denote the (random) output using such a biased coin by
T .

Lemma 2. Show that

Pr

(∑
i∈S

i ≥ 30

)
< Pr

(∑
i∈T

i ≥ 30

)
.

Proof. While it is true that each i is strictly more likely to be added to T than S, and that E
[∑

i∈S i ≥ 30
]
<

E
[∑

i∈T i ≥ 30
]
, these do not immediately imply the lemma. To prove a lemma, we define a random process

that generates both S and T simultaneously ; in particular, the outputs S and T are not independent and
always satisfy S ⊆ T .

Algorithm 2 Generating S, T ⊆ V simultaneously

1: S, T ← ∅;
2: for all i ∈ [10] independently do
3: With probability 0.5: S ← S ∪ {i} and T ← T ∪ {i};
4: With probability 0.01: S ← S and T ← T ∪ {i};
5: With probability 0.49: S ← S and T ← T .
6: end for

return S, T

Observe that, both S and T are distributed as required. However, they are not independent and we
always have S ⊆ T , i.e., Pr(S ⊆ T) = 1. Furthermore, if

∑
i∈S i ≥ 30 then

∑
i∈T i ≥ 30 since S ⊆ T .

Therefore,

Pr

(∑
i∈S

i ≥ 30

)
< Pr

(∑
i∈T

i ≥ 30

)
.

Note that the inequality is strict because it is possible (happens with positive probability) to output S = ∅
and T = [10] at the same time.

2

3 Matrix Multiplication Verification

The matrix multiplication verification problem is as follows.

• Input: A,B,C ∈ Zn×n.

• Decide AB = C vs AB 6= C.

Algorithm 3 Straightforward algorithm

Input: A,B,C ∈ Zn×n

1: Compute C ′ = AB;
2: if C = C ′ then

return Yes;
3: else (namely C 6= C ′)

return No;
4: end if

Straightforward algorithm. The running time of Algorithm 3 depends on how fast we can multiply two
n×n matrices. Doing it directly by definition requires O(n3) time. The current fastest algorithm for matrix
multiplication runs in O(n2.37...) time.

Algorithm 4 Freivalds’ algorithm

Input: A,B,C ∈ Zn×n

1: Sample x ∈ {0, 1}n uniformly at random;
2: Compute y = ABx and y′ = Cx;
3: if y = y′ then

return Yes;
4: else (namely y 6= y′)

return No;
5: end if

Randomized algorithm. Freivalds’ algorithm (Algorithm 4) is a randomized algorithm for matrix mul-
tiplication verification. The running time of Algorithm 4 is O(n2); this is because we can avoid matrix
multiplication by the associative property

(AB)x = A(Bx)

and compute y = ABx with only matrix-vector multiplication.
If AB = C, then no matter what x ∈ {0, 1}n is chosen it holds ABx = Cx and hence Algorithm 4

outputs “Yes” always. If AB 6= C, we show in the next lemma that ABx 6= Cx for at least half of the
vectors x ∈ {0, 1}n and hence Algorithm 4 outputs “No” with probability at least 1/2.

Lemma 3. If AB 6= C, then Pr(ABx 6= Cx) ≥ 1/2.

Proof. Let D = AB − C 6= 0. We need to show Pr(Dx 6= 0) ≥ 1/2. Since D 6= 0, there exist i, j ∈ [n] such
that Dij 6= 0. Consider the i’th entry of Dx, which is given by

(Dx)i =

n∑
k=1

Dikxk =

∑
k 6=j

Dikxk

+ Dijxj .

3

https://en.wikipedia.org/wiki/Freivalds%27_algorithm

Observe that, flipping the value of xj changes the value of (Dx)i since Dij 6= 0. Thus, we have Dx 6= Dx′

where x′ is obtained from x by flipping the j’th entry, and in particular we have either Dx 6= 0 or Dx′ 6= 0.
We can then pair up all vectors in {0, 1}n such that in each pair the two vectors differ exactly at the j’th
entry, and hence at least one of them satisfies Dx 6= 0. This implies that Pr(Dx 6= 0) ≥ 1/2 since x is chosen
uniformly at random.

The success probability of Algorithm 4 is summarized in the table below.

Pr(return Yes) Pr(return No)
AB = C 1 0
AB 6= C ≤ 1

2 ≥ 1
2

Note that in the AB 6= C case, we can only guarantee a success probability of at least 1/2. However,
we can boost up the success probability by running multiple trials. More precisely, we run Algorithm 4
for k times independently, and return “Yes” if Algorithm 4 outputs “Yes” in all these k trials, and return
“No” if Algorithm 4 outputs “No” in at least one of the k trials. Then, in the AB 6= C case, we get “Yes”
with probability at most 1/2k, which can be arbitrarily small by choosing a large enough k. The success
probability is summarized below.

Pr(return Yes in all k trials) Pr(return No in one of k trials)
AB = C 1 0
AB 6= C ≤ 1

2k
≥ 1− 1

2k

If k = 10, then the success probability is already at least 1− 1/210 > 0.999.

4

	Maximum Cut
	Coupling
	Matrix Multiplication Verification

