CSE 632: Analysis of Algorithms II: Randomized Algorithms Spring 2024

Lecture 1: Examples of Randomized Algorithms

Lecturer: Zongchen Chen

1 Maximum Cut

Let $G = (V, E)$ be a graph. For a subset $S \subseteq V$ of vertices, the cut set is defined as

$$
E(S, V \setminus S) = \{ uv \in E : u \in S, v \in V \setminus S \}.
$$

The max cut of G is defined as

$$
\max\text{-}\mathrm{cut}(G)=\max_{S\subseteq V}|E(S,V\setminus S)|.
$$

Finding the max cut is NP hard. However, one can show that the max cut always contains at least half of the edges, using a randomized algorithm.

Lemma 1. For every graph $G = (V, E)$, it holds

$$
\max\text{-cut}(G) \ge \frac{|E|}{2}.\tag{1}
$$

Proof. We prove the lemma by finding a subset $S \subseteq V$ such that $|E(S, V \setminus S)| \geq |E|/2$. Instead of constructing S explicitly or deterministically, we consider a randomized algorithm which just outputs a subset $S \subseteq V$ uniformly at random. More precisely, $S \subseteq V$ is constructed randomly as follows.

Algorithm 1 Generating $S \subseteq V$ uniformly at random

1: $S \leftarrow \emptyset$; 2: for all $v \in V$ independently do 3: Flip a fair coin; 4: if Head then 5: $S \leftarrow S \cup \{v\};$ 6: else 7: $S \leftarrow S$; 8: end if 9: end for return S

We show that

$$
\mathbb{E}[|E(S, V \setminus S)|] = \frac{|E|}{2}.\tag{2}
$$

.

Observe that, [Eq. \(2\)](#page-0-0) implies the existence of a subset $S \subseteq V$ such that $|E(S, V \setminus S)| \geq |E|/2$, since the "maximum value" must be no less than the "average value":

$$
\max\text{-cut}(G) = \max_{S \subseteq V} |E(S, V \setminus S)| \ge \mathbb{E}[|E(S, V \setminus S)|] = \frac{|E|}{2}
$$

We now prove [Eq. \(2\).](#page-0-0) For each edge $e \in E$, define an indicator random variable by

$$
X_e = \begin{cases} 1, & \text{if } e \in E(S, V \setminus S); \\ 0, & \text{otherwise.} \end{cases}
$$

For each $e = uv \in E$, observe that X_e is a Bernoulli random variable with expectation

$$
\mathbb{E}[X_e] = \Pr(X_e = 1) = \Pr(e \in E(S, V \setminus S))
$$

= $\Pr(u \in S, v \notin S) + \Pr(u \notin S, v \in S) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}.$

It follows that

$$
\mathbb{E}[|E(S, V \setminus S)|] = \mathbb{E}\left[\sum_{e \in E} X_e\right] = \sum_{e \in E} \mathbb{E}[X_e] = \sum_{e \in E} \frac{1}{2} = \frac{|E|}{2},
$$

where we use the linearity of expectation: for two random variables X and Y (they can be dependent) it holds $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$. \Box

2 Coupling

Consider the process of generating a uniformly random subset $S \subseteq V = \{1, 2, ..., 10\}$ as described in [Algorithm 1.](#page-0-1) Let S be the (random) output of [Algorithm 1.](#page-0-1) Now consider the same process but with a biased coin instead of a fair one; more precisely, suppose $Pr(Head) = 0.51$ so that each element is included in S independently with a larger probability 0.51. Denote the (random) output using such a biased coin by T.

Lemma 2. Show that

$$
\Pr\left(\sum_{i\in S} i \ge 30\right) < \Pr\left(\sum_{i\in T} i \ge 30\right).
$$

Proof. While it is true that each i is strictly more likely to be added to T than S, and that $\mathbb{E}\left[\sum_{i\in S} i \geq 30\right]$ $\mathbb{E}\left[\sum_{i\in T} i \geq 30\right]$, these do not immediately imply the lemma. To prove a lemma, we define a random process that generates both S and T simultaneously; in particular, the outputs S and T are not independent and always satisfy $S \subseteq T$.

1: $S, T \leftarrow \emptyset$; 2: for all $i \in [10]$ independently do 3: With probability 0.5: $S \leftarrow S \cup \{i\}$ and $T \leftarrow T \cup \{i\};$ 4: With probability 0.01: $S \leftarrow S$ and $T \leftarrow T \cup \{i\};$ 5: With probability 0.49: $S \leftarrow S$ and $T \leftarrow T$. 6: end for return S , T

Observe that, both S and T are distributed as required. However, they are not independent and we always have $S \subseteq T$, i.e., $Pr(S \subseteq T) = 1$. Furthermore, if $\sum_{i \in S} i \geq 30$ then $\sum_{i \in T} i \geq 30$ since $S \subseteq T$. Therefore,

$$
\Pr\left(\sum_{i\in S} i \ge 30\right) < \Pr\left(\sum_{i\in T} i \ge 30\right).
$$

Note that the inequality is strict because it is possible (happens with positive probability) to output $S = \emptyset$ and $T = [10]$ at the same time. \Box

3 Matrix Multiplication Verification

The matrix multiplication verification problem is as follows.

- Input: $A, B, C \in \mathbb{Z}^{n \times n}$.
- Decide $AB = C$ vs $AB \neq C$.

Algorithm 3 Straightforward algorithm

Input: $A, B, C \in \mathbb{Z}^{n \times n}$ 1: Compute $C' = AB$; 2: if $C = C'$ then return Yes; 3: else (namely $C \neq C'$) return No; 4: end if

Straightforward algorithm. The running time of [Algorithm 3](#page-2-0) depends on how fast we can multiply two $n \times n$ matrices. Doing it directly by definition requires $O(n^3)$ time. The current fastest algorithm for matrix multiplication runs in $O(n^{2.37...})$ time.

Algorithm 4 Freivalds' algorithm **Input:** $A, B, C \in \mathbb{Z}^{n \times n}$

1: Sample $x \in \{0,1\}^n$ uniformly at random; 2: Compute $y = ABx$ and $y' = Cx$; 3: if $y = y'$ then return Yes; 4: **else** (namely $y \neq y'$) return No; 5: end if

Randomized algorithm. [Freivalds' algorithm](https://en.wikipedia.org/wiki/Freivalds%27_algorithm) [\(Algorithm 4\)](#page-2-1) is a randomized algorithm for matrix mul-tiplication verification. The running time of [Algorithm 4](#page-2-1) is $O(n^2)$; this is because we can avoid matrix multiplication by the associative property

$$
(AB)x = A(Bx)
$$

and compute $y = ABx$ with only matrix-vector multiplication.

If $AB = C$, then no matter what $x \in \{0,1\}^n$ is chosen it holds $ABx = Cx$ and hence [Algorithm 4](#page-2-1) outputs "Yes" always. If $AB \neq C$, we show in the next lemma that $ABx \neq Cx$ for at least half of the vectors $x \in \{0,1\}^n$ and hence [Algorithm 4](#page-2-1) outputs "No" with probability at least $1/2$.

Lemma 3. If $AB \neq C$, then $Pr(ABx \neq Cx) \geq 1/2$.

Proof. Let $D = AB - C \neq 0$. We need to show $Pr(Dx \neq 0) \geq 1/2$. Since $D \neq 0$, there exist $i, j \in [n]$ such that $D_{ij} \neq 0$. Consider the *i*'th entry of Dx, which is given by

$$
(Dx)_i = \sum_{k=1}^n D_{ik}x_k = \left(\sum_{k \neq j} D_{ik}x_k\right) + D_{ij}x_j.
$$

Observe that, flipping the value of x_j changes the value of $(Dx)_i$ since $D_{ij} \neq 0$. Thus, we have $Dx \neq Dx'$ where x' is obtained from x by flipping the j'th entry, and in particular we have either $Dx \neq 0$ or $Dx' \neq 0$. We can then pair up all vectors in $\{0,1\}^n$ such that in each pair the two vectors differ exactly at the j'th entry, and hence at least one of them satisfies $Dx \neq 0$. This implies that $Pr(Dx \neq 0) \geq 1/2$ since x is chosen uniformly at random. \Box

The success probability of [Algorithm 4](#page-2-1) is summarized in the table below.

Note that in the $AB \neq C$ case, we can only guarantee a success probability of at least 1/2. However, we can boost up the success probability by running multiple trials. More precisely, we run [Algorithm 4](#page-2-1) for k times independently, and return "Yes" if [Algorithm 4](#page-2-1) outputs "Yes" in all these k trials, and return "No" if [Algorithm 4](#page-2-1) outputs "No" in at least one of the k trials. Then, in the $AB \neq C$ case, we get "Yes" with probability at most $1/2^k$, which can be arbitrarily small by choosing a large enough k. The success probability is summarized below.

	$Pr(\textbf{return Yes in all } k \text{ trials})$ $Pr(\textbf{return No in one of } k \text{ trials})$
$AB = C$	
$AB \neq C$	

If $k = 10$, then the success probability is already at least $1 - 1/2^{10} > 0.999$.