
CSE 632: Analysis of Algorithms II: Randomized Algorithms Spring 2024

Lecture 18: 2-SAT
Lecturer: Zongchen Chen

1 2-SAT

Consider the 2-SAT problem. Given a Boolean formula f in CNF where every clause contains exactly two
literals, our goal is to find a satisfying assignment for f .

Recall that 2-SAT can be solved in polynomial time via a reduction to strongly connected components of
directed graphs. Here we present a simple randomized algorithm. Algorithm 1 applies to the general SAT
problem and we shall analyze it for 2-SAT.

Algorithm 1 Randomized algorithm for SAT

Input: σ initial assignment
1: repeat T times
2: Choose an arbitrary unsatisfied clause c
3: Choose a literal in c u.a.r.
4: Flip the truth value of the chosen variable in σ (to satisfy c)
5: if σ is a satisfying assignment then
6: return σ & halt
7: end if
8: end
9: return Unsatisfiable

Remark 1. 1. We can pick an arbitrary assignment σ as initialization, e.g., taking the all-true or all-
false assignment. Alternatively, we can apply random initialization: start with a uniformly random
assignment σ.

2. In Line 2, we can choose the unsatisfied clause c arbitrarily, e.g., picking the one of the smallest index,
or choosing one uniformly at random.

3. In Line 3, we have to choose a literal uniformly at random for our analysis to work.

If f is unsatisfiable, then clearly Algorithm 1 will output Unsatisfiable. Suppose f is satisfiable, and let
τ be a satisfying assignment. Define σt to be the assignment at time t of Algorithm 1, and Xt to be the
number of variables that agree between σt and τ . If Xt = n, then σt = τ and the algorithm finds a satisfying
assignment. Note that Xt ∈ {0, 1, . . . , n} can be thought of as a random walk moving between adjacent
integers where either Xt+1 = Xt + 1 or Xt+1 = Xt − 1.

Claim 2. For each t < T and i ∈ {0, 1, . . . , n− 1}, we have

Pr (Xt+1 = i+ 1 | Xt = i) ≥ 1

2
.

Proof. Suppose we pick clause c in the update from σt to σt+1, and the two variables in c are x1 and x2

without loss of generality. Then, c is not satisfied by σt, but is satisfied by τ . This means that σt(xj) 6= τ(xj)
for at least one j ∈ {1, 2}. If σt(x1) 6= τ(x1) and σt(x2) = τ(x2), then Xt+1 = Xt + 1 with probability
1/2. Similarly for the case σt(x1) = τ(x1) and σt(x2) 6= τ(x2). If σt(x1) 6= τ(x1) and σt(x2) 6= τ(x2), then
Xt+1 = Xt + 1 always. The claim then follows.

1

We want to show that the number of steps for Xt to reach n (in which case σt = τ) is poly(n) in
expectation. Consider a slowed-down process (Yt) where Y0 = X0 and

Pr (Yt+1 = i+ 1 | Yt = i) =
1

2
.

So, (Yt) is an unbiased random walk on {0, 1, . . . , n}. It suffices to show (via a simple coupling argument)
that the number of steps for Yt to reach n is poly(n) in expectation.

Define Hj to be the number of steps for the random walk (Yt) to reach n when starting at Y0 = j. Let
hj = E[Hj] be its expectation.

Lemma 3. For all j ∈ {0, 1, . . . , n}, we have

hj = n2 − j2.

In particular, hj ≤ h0 = n2.

Proof. By definition, we have the following recurrence:
h0 = h1 + 1;

hj = 1
2hj−1 + 1

2hj+1 + 1, 1 ≤ j ≤ n− 1;

hn = 0.

Thus, we have

hj − hj+1 = hj−1 − hj + 2 = hj−2 − hj−1 + 4 = · · · = h0 − h1 + 2j = 2j + 1,

and

hj = hj − hn =

n−1∑
i=j

hi − hi+1 =

n−1∑
i=j

2i+ 1 = n2 − j2,

as claimed.

If we run Algorithm 1 with T = 2n2 rounds, then it holds

Pr (Algorithm 1 outputs Unsatisfiable)

≤ Pr
(
Xt does not reach n for t ≤ 2n2

)
≤ Pr

(
Yt does not reach n for t ≤ 2n2

)
≤ Pr

(
H0 > 2n2

)
≤ h0

2n2
=

1

2
. (Markov’s Inequality)

2 3-SAT

In the 3-SAT problem, we are given a Boolean formula f in CNF where every clause contains exactly three
literals, and our goal is to find a satisfying assignment for f . Recall that 3-SAT is NP-complete. Moreover,
the Exponential Time Hypothesis (ETH) states that 3-SAT cannot be solved in 2o(n) time.

The trivial algorithm for 3-SAT is to enumerate all 2n assignments and check for each of them if it is
satisfying or not. The running time of such a brute-force algorithm is 2npoly(n). Our goal is to obtain
a faster algorithm running in time anpoly(n) for some a < 2 as small as possible. In fact, we show that
Algorithm 1 with random initialization can achieve a = 4/3 for 3-SAT.

2

As before, we assume f is satisfiable and let τ be a satisfying assignment. Define σt to be the assignment
at time t of Algorithm 1, and Xt to be the number of variables that agree between σt and τ . Analogously
to Claim 2, we have for each t < T and i ∈ {0, 1, . . . , n− 1} that

Pr (Xt+1 = i+ 1 | Xt = i) ≥ 1

3
.

The slowed-down version (Yt) is then defined as Y0 = X0 and

Pr (Yt+1 = i+ 1 | Yt = i) =
1

3
.

If hj denotes the expected number of steps for (Yt) to reach n starting at Y0 = j, then we have the recurrence
h0 = h1 + 1;

hj = 2
3hj−1 + 1

3hj+1 + 1, 1 ≤ j ≤ n− 1;

hn = 0.

Solving the recurrence gives

hj = 2n+2 − 2j+2 − 3(n− j).

Note that h0 = 2n+2−4−3n = Θ(2n) (for worst-case initialization) and hn/2 = 2n+2−2n/2+2−3n/2 = Θ(2n)
(for random initialization). Therefore, the previous argument for 2-SAT could only give a 2npoly(n) time
algorithm for 3-SAT. In fact, even for j = n − 1 we have hn−1 = 2n+2 − 2n+1 − 3 = 2n+1 − 3 = Θ(2n);
namely, even if we start with an assignment σ0 which differ from τ at only one variable, the number of steps
to reach τ could be Θ(2n) in expectation. However, the probability of reaching τ in the first step is at least
1/3; that is, Pr (Y1 = n | Y0 = n− 1) = 1/3. This indicates that, instead of analyzing the expected number
of steps to reach n (and then applying the Markov’s inequality), we should look at directly the probability
of reaching n within T steps.

The following fact is helpful to us.

Fact 4. For any n ∈ N and α ∈ (0, 1) such that αn is an integer, we have(
n

αn

)
≥ 1

n+ 1

(
1

α

)αn(
1

1− α

)(1−α)n

.

We set T = 3n in Algorithm 1. For any 1 ≤ j ≤ n, we deduce that

Pr (Yt reaches n for t ≤ 3n | Y0 = n− j)

≥ Pr
(

in the first 3j steps, 2j of them
are “+1” and j of them are “−1” | Y0 = n− j

)
=

(
3j

j

)(
1

3

)2j (
2

3

)j
≥ 1

3j + 1
(3)j

(
3

2

)2j (
1

3

)2j (
2

3

)j
(Fact 4)

≥ 1

4n

(
3 · 32

22
· 1

32
· 2

3

)j
=

1

4n
· 1

2j
.

3

Recall that in random initialization, we pick the initial assignment σ0 uniformly at random. Hence,
X0 = Y0, the number of variables that agree in σ0 and τ , is a binomial random variable with parameters n
and 1/2. We then deduce that

Pr (Algorithm 1 finds a satisfying assignment)

≥ Pr (Xt reaches n for t ≤ 3n)

≥ Pr (Yt reaches n for t ≤ 3n)

=

n∑
j=0

Pr (Y0 = n− j) Pr (Yt reaches n for t ≤ 3n | Y0 = n− j)

≥
n∑
j=0

(
n
j

)
2n
· 1

4n
· 1

2j

=
1

4n
· 1

2n

n∑
j=0

(
n

j

)
1

2j

=
1

4n
· 1

2n

(
1 +

1

2

)n
=

1

4n

(
3

4

)n
.

Therefore, repeating Algorithm 1 for (4
3)npoly(n) times allows us to find a satisfying assignment with prob-

ability at least 1/2. The overall running time is (4
3)npoly(n), which is much better than 2n.

4

	2-SAT
	3-SAT

