#### CSE 632: Analysis of Algorithms II: Randomized Algorithms

Spring 2024

Lecture 13: Fingerprinting

Lecturer: Zongchen Chen

# 1 Fingerprinting Algorithm

Alice has an *n*-bit number  $x = x_1 x_2 \dots x_n$ . Bob also has an *n*-bit number  $y = y_1 y_2 \dots y_n$ . Their goal is to check if x = y or not efficiently, in the sense of low communication complexity.

### Algorithm 1 Fingerprinting algorithm

- 1: Alice picks a prime number p uniformly at random from  $\{2, 3, \ldots, T\}$ , computes  $F_p(x) = (x \mod p)$ , and sends  $(p, F_p(x))$  to Bob
- 2: Bob computes  $F_p(y) = (y \mod p)$ , and checks if  $F_p(x) = F_p(y)$  or not.

Observe that if x = y, then  $F_p(x) = F_p(y)$  for any choice of p, and Algorithm 1 outputs Yes always. If  $x \neq y$ , we need to show that  $\Pr(F_p(x) \neq F_p(y)) \geq 1/2$  for a suitable choice of T.

We need some knowledge of number theory to establish this. Let  $\log(\cdot)$  denote the natural logarithm (commonly notated as  $\ln(\cdot)$  or  $\log_e(\cdot)$ ).

**Theorem 1** (Prime Number Theorem).

(1) Let  $\pi(x)$  be the number of prime numbers less than or equal to x. Then it holds

$$\pi(x) \sim \frac{x}{\log(x)}.$$

Moreover, for  $x \ge 17$ , it holds

$$\frac{x}{\log x} \le \pi(x) \le \frac{1.26x}{\log x}.$$

(2) Let  $p_n$  be the nth prime number. Then it holds

$$p_n \sim n \log n$$
.

(3) Let p denote prime numbers in the equation below, and it holds

$$\sum_{p \le x} \log p = \log \left( \prod_{p \le x} p \right) \sim x.$$

**Lemma 2.** Suppose T = 8n. If  $x \neq y$ , then

$$\Pr\left(F_p(x) = F_p(y)\right) \le \frac{1}{2}.$$

*Proof.* Observe that,  $F_p(x) = F_p(y)$  if and only if  $p \mid |x - y|$ . We need to count the number of primes that divides |x - y|; denote this count by k. Since |x - y| has at most n bits, k is at most n (more specifically,  $2^n \ge |x - y| \ge p_1 \cdots p_k \ge 2^k$  and thus  $n \ge k$ ). In fact, by the Prime Number Theorem, we have  $k \le \pi(n)$ 

(more specifically,  $2^n \ge |x-y| \ge p_1 \cdots p_k \gtrsim e^{p_k} \ge 2^{p_k}$  and thus  $n \ge p_k$  which is equivalent to  $\pi(n) \ge k$ ). Therefore, we deduce again from the Prime Number Theorem that

$$\Pr\left(F_p(x) = F_p(y)\right) \le \frac{\pi(n)}{\pi(T)} \le \frac{2n/\log n}{T/\log T} = \frac{2n}{T} \cdot \frac{\log T}{\log n} \le \frac{1}{4} \cdot 2 = \frac{1}{2},$$

as wanted.  $\Box$ 

Since it suffices to choose T = O(n) by Lemma 2, both p and  $F_p(x)$  have  $O(\log n)$  bits. Therefore, in Algorithm 1 Alice only needs to send  $O(\log n)$  bits to Bob.

*Remark* 3. We can combine the polynomial identity testing algorithm with our fingerprinting algorithm. Intermediate computations when evaluating polynomials may result in huge numbers, and we can use modulo a small prime number as in fingerprinting to reduce computational cost.

## 2 Pattern Matching

Given an *n*-bit string  $x = x_1 \dots x_n$  and a shorter *m*-bit string  $y = y_1 \dots y_m$  where  $m \le n$ , check if *y* occurs as a substring of *x* or not. In other words, for each *j* let  $w(j) = x_j x_{j+1} \dots x_{j+m-1}$ , and we want to check if there exists *j* such that w(j) = y.

#### Algorithm 2 Pattern matching

- 1: Pick a random prime  $p \in \{2, 3, \dots, T\}$
- 2: Compute  $F_p(y) = (y \mod p)$
- 3: **for** j = 1 to n m + 1 **do**
- 4: Compute  $F_p(w(j)) = (w(j) \mod p)$
- 5: if  $F_p(w(j)) = F_p(y)$  then
  - return Yes
- 6: end if
- 7: end for

return No

Correctness. If there exists j such that w(j) = y, then  $F_p(w(j)) = F_p(y)$  for this j, and Algorithm 2 will output Yes. Now suppose  $w(j) \neq y$  for all j. Then for each j, we have

$$\Pr(F_p(w(j)) = F_p(y)) = \Pr(p \mid |w(j) - y|) \le \frac{\pi(m)}{\pi(T)},$$

as before. By the union bound, we have

$$\Pr\left(\text{output Yes}\right) = \Pr\left(\exists j : F_p(w(j)) = F_p(y)\right) \le \frac{n\pi(m)}{\pi(T)}.$$

In this case we can actually do better than union bound:

Pr (output Yes) = Pr 
$$(\exists j: F_p(w(j)) = F_p(y))$$
  
= Pr  $(\exists j: p \mid |w(j) - y|)$   
= Pr  $\left(p \mid \underbrace{\prod_{j=1}^{n-m+1} |w(j) - y|}_{\leq mn \text{ bits}}\right)$   
 $\leq \frac{\pi(mn)}{\pi(T)} \leq \frac{1}{2},$ 

where the last inequality holds when we set T = 8mn.

Running time. Since T = O(mn), the prime p has  $O(\log(mn)) = O(\log n)$  bits. Computing  $F_p(y)$  takes O(m) time since y has m bits. Computing  $F_p(w(j))$  for all j can be done recursively:

$$w(j+1) = 2w(j) + x_{j+m} - 2^m x_j$$

$$\implies F_p(w(j+1)) = ((2F_p(w(j)) + x_{j+m} - F_p(2^m)x_j) \mod p)$$

Thus, each iteration takes O(1) time (note that we can compute  $F_p(2^m) = (2^m \mod p)$  once for all). The total running time is O(n+m).