
CSE 632: Analysis of Algorithms II: Randomized Algorithms Spring 2024

Lecture 13: Fingerprinting
Lecturer: Zongchen Chen

1 Fingerprinting Algorithm

Alice has an n-bit number x = x1x2 . . . xn. Bob also has an n-bit number y = y1y2 . . . yn. Their goal is to
check if x = y or not efficiently, in the sense of low communication complexity.

Algorithm 1 Fingerprinting algorithm

1: Alice picks a prime number p uniformly at random from {2, 3, . . . , T}, computes Fp(x) = (x mod p), and
sends (p, Fp(x)) to Bob

2: Bob computes Fp(y) = (y mod p), and checks if Fp(x) = Fp(y) or not.

Observe that if x = y, then Fp(x) = Fp(y) for any choice of p, and Algorithm 1 outputs Yes always. If
x 6= y, we need to show that Pr (Fp(x) 6= Fp(y)) ≥ 1/2 for a suitable choice of T .

We need some knowledge of number theory to establish this. Let log(·) denote the natural logarithm
(commonly notated as ln(·) or loge(·)).

Theorem 1 (Prime Number Theorem).

(1) Let π(x) be the number of prime numbers less than or equal to x. Then it holds

π(x) ∼ x

log(x)
.

Moreover, for x ≥ 17, it holds

x

log x
≤ π(x) ≤ 1.26x

log x
.

(2) Let pn be the nth prime number. Then it holds

pn ∼ n log n.

(3) Let p denote prime numbers in the equation below, and it holds

∑
p≤x

log p = log

∏
p≤x

p

 ∼ x.
Lemma 2. Suppose T = 8n. If x 6= y, then

Pr (Fp(x) = Fp(y)) ≤ 1

2
.

Proof. Observe that, Fp(x) = Fp(y) if and only if p | |x − y|. We need to count the number of primes that
divides |x − y|; denote this count by k. Since |x − y| has at most n bits, k is at most n (more specifically,
2n ≥ |x − y| ≥ p1 · · · pk ≥ 2k and thus n ≥ k). In fact, by the Prime Number Theorem, we have k ≤ π(n)

1

(more specifically, 2n ≥ |x − y| ≥ p1 · · · pk & epk ≥ 2pk and thus n ≥ pk which is equivalent to π(n) ≥ k).
Therefore, we deduce again from the Prime Number Theorem that

Pr (Fp(x) = Fp(y)) ≤ π(n)

π(T)
≤ 2n/ log n

T/ log T
=

2n

T
· log T

log n
≤ 1

4
· 2 =

1

2
,

as wanted.

Since it suffices to choose T = O(n) by Lemma 2, both p and Fp(x) have O(log n) bits. Therefore, in
Algorithm 1 Alice only needs to send O(log n) bits to Bob.

Remark 3. We can combine the polynomial identity testing algorithm with our fingerprinting algorithm.
Intermediate computations when evaluating polynomials may result in huge numbers, and we can use modulo
a small prime number as in fingerprinting to reduce computational cost.

2 Pattern Matching

Given an n-bit string x = x1 . . . xn and a shorter m-bit string y = y1 . . . ym where m ≤ n, check if y occurs
as a substring of x or not. In other words, for each j let w(j) = xjxj+1 . . . xj+m−1, and we want to check if
there exists j such that w(j) = y.

Algorithm 2 Pattern matching

1: Pick a random prime p ∈ {2, 3, . . . , T}
2: Compute Fp(y) = (y mod p)
3: for j = 1 to n−m+ 1 do
4: Compute Fp(w(j)) = (w(j) mod p)
5: if Fp(w(j)) = Fp(y) then

return Yes
6: end if
7: end for

return No

Correctness. If there exists j such that w(j) = y, then Fp(w(j)) = Fp(y) for this j, and Algorithm 2 will
output Yes. Now suppose w(j) 6= y for all j. Then for each j, we have

Pr (Fp(w(j)) = Fp(y)) = Pr (p | |w(j)− y|) ≤ π(m)

π(T)
,

as before. By the union bound, we have

Pr (output Yes) = Pr (∃j : Fp(w(j)) = Fp(y)) ≤ nπ(m)

π(T)
.

In this case we can actually do better than union bound:

Pr (output Yes) = Pr (∃j : Fp(w(j)) = Fp(y))

= Pr (∃j : p | |w(j)− y|)

= Pr

(
p

∣∣∣∣ n−m+1∏
j=1

|w(j)− y|︸ ︷︷ ︸
≤mn bits

)

≤ π(mn)

π(T)
≤ 1

2
,

2

where the last inequality holds when we set T = 8mn.
Running time. Since T = O(mn), the prime p has O(log(mn)) = O(log n) bits. Computing Fp(y) takes

O(m) time since y has m bits. Computing Fp(w(j)) for all j can be done recursively:

w(j + 1) = 2w(j) + xj+m − 2mxj

=⇒ Fp(w(j + 1)) = ((2Fp(w(j)) + xj+m − Fp(2m)xj) mod p)

Thus, each iteration takes O(1) time (note that we can compute Fp(2m) = (2m mod p) once for all). The
total running time is O(n+m).

3

	Fingerprinting Algorithm
	Pattern Matching

