
CSE 632: Analysis of Algorithms II: Randomized Algorithms Spring 2024

Lecture 12: Bipartite Perfect Matching
Lecturer: Zongchen Chen

1 Finding a Perfect Matching in Bipartite Graphs

We consider the search problem for bipartite perfect matching: Given a bipartite graph G = (U ∪ V,E)
where |U | = |V | = n, find a perfect matching of G if one exists.

Recall that we have an algorithm to test if G has a perfect matching via polynomial identity testing.
One simple idea for finding a perfect matching in G is to use the following sequential procedure: Try an
edge e = uv ∈ E and check if G \ {u, v} has a perfecting matching or not; if yes, add e to the output perfect
matching and repeat on the smaller graph G \ {u, v}; if no, discard e and repeat on G \ e. Here, G \ {u, v} is
a subgraph of G where we remove vertices u, v and their adjacent edges, and G \ e is a subgraph where we
remove a single edge e.

Algorithm 1 A sequential algorithm for bipartite perfect matching

1: M ← ∅
2: while G has an edge do
3: Choose an arbitrary edge e = uv
4: Check if G′ = G \ {u, v} has a perfect matching or not . Need failure probability ≤ 1

2m
5: if YES then
6: M ←M ∪ {e}
7: G← G′

8: else
9: G← G \ e

10: end if
11: end while

return M

Algorithm 1 takes at most m rounds to find a perfect matching. Each round requires O(logm) trials of
bipartite perfect matching testing (with failure probability ≤ 1/2), so that the failure probability of each
round is ≤ 1

2m , and by the union bound Algorithm 1 fails with probability at most 1/2.

2 Sequential and Parallel Algorithms

In a sequential algorithm, a single processor computes sequentially, and we want the algorithm to run in
poly(n) time. In a parallel algorithm, multiple processors compute simultaneously, and we want the algorithm
to run in polylog(n) time with poly(n) processors.

Example 1. Summation: Compute
∑n

i=1 xi. A sequential algorithm takes O(n) time, while a parallel
algorithm runs in O(log n) time with O(n) processors.

Example 2. Matrix multiplication: Compute AB where A,B ∈ Zn×n. A sequential algorithm runs in
O(nω) time where ω ≈ 2.37 (currently) is the matrix multiplication exponent. A parallel algorithm runs in
O(log n) time with O(n3) processors.

Example 3. Matrix determinant: Compute det(A) where A ∈ Zn×n. A sequential algorithm runs in O(nω)
time where ω ≈ 2.37 (currently) is the matrix multiplication exponent. There is a parallel algorithm which

1

computes the determinant in O(log2 n) time with O(n3.5) processors, see this paper. This in particular gives
an efficient parallel algorithm for testing if a bipartite graph G has a perfect matching or not.

3 Parallel Algorithm for Bipartite Perfect Matching

Our goal is to find a perfect matching in parallel in polylog(n) time. A first idea is to run the sequential
Algorithm 1 in parallel. Namely, for each edge uivj ∈ E, do the following in parallel: Check if G \ {ui, vj}
contains a perfect matching or not by checking if det(Aij) 6= 0 or not, where Aij is the Tutte matrix A with
the i’th row and j’th column removed; If det(Aij) 6= 0 then output uivj . Observe that such an algorithm
would output a subset of edges

⋃
M∈PMM where PM denotes the set of all perfect matchings of G. In

particular, if G has a unique perfect matching, then this parallel algorithm indeed works.
When there are multiple perfect matchings, we would try to isolate one of them. Our plan is to assign

random weights to edges so that G has a unique minimum weight perfect matching M∗ and we can check if
an edge e ∈M∗ or not in parallel. The following lemma is helpful to us.

Lemma 4 (Isolation Lemma). Let S1, . . . , Sk ⊆ S be subsets of a ground set S where |S| = m. Each element
x ∈ S is assigned a random weight w(x) chosen independently and uniformly at random from {1, . . . , `}. For
each subset Si, the weight of Si is defined as w(Si) =

∑
x∈Si

w(x). Then, we have

Pr (∃ a unique Si of min weight) ≥ 1− m

`
.

Proof. For x ∈ S, we say x is tied if

min
j: x∈Sj

w(Sj) = min
j: x 6∈Sj

w(Sj).

Observe that, there exist multiple minimum weight subsets if and only if there exists x ∈ S which is tied.
Fix x ∈ S and w(y) for all y ∈ S \ {x}. Define

w+ = min
j: x∈Sj

w(Sj)− w(x) and w− = min
j: x6∈Sj

w(Sj).

Then, x is tied iff w(x) = w− − w+. Therefore,

Pr (x is tied | w(y), y ∈ S \ {x}) ≤ 1

`
.

This implies that

Pr (x is tied) ≤ 1

`
.

Hence, we deduce from the union bound that

Pr (∃ tied x ∈ S) ≤ m

`
.

The lemma then follows.

For each edge e, choose a weight w(e) independently and uniformly at random from {1, . . . , 2m}. The
weight of a perfect matching M ∈ PM is defined as w(M) =

∑
e∈M w(e). By the isolation lemma, if G

contains a perfect matching, then with probability at least 1/2 there is a unique perfect matching M∗ of
minimum weight. Define an n× n matrix D = (dij)

n
i,j=1 with entries

dij =

{
2w(e), if e = uivj ∈ E
0, otherwise

2

https://ieeexplore.ieee.org/document/4568175

That is, D is the Tutte matrix AG = AG(x) evaluated at xe = 2w(e), e ∈ E. Recall that

det(AG) =
∑

M∈PM
sgn(σM)

∏
e∈M

xe.

Therefore, we obtain

det(D) =
∑

M∈PM
sgn(σM)

∏
e∈M

2w(e) =
∑

M∈PM
sgn(σM) 2w(M). (1)

Claim 5. 1. If G does not contain a perfect matching, then det(D) = 0;

2. If G has a unique minimum weight perfect matching M∗, then det(D) 6= 0 and the maximum power of
2 dividing det(D) is w(M∗), i.e.,

2w(M∗) | det(D) and 2w(M∗)+1 - det(D).

Proof. The first claim follows immediately from Eq. (1). For the second, observe that

det(D) = sgn(σM∗) 2w(M∗) + 2w(M∗)+1
∑

M∈PM
M 6=M∗

sgn(σM) 2w(M)−w(M∗)−1.

Since sgn(σM∗) ∈ {±1} is odd and w(M)− w(M∗)− 1 ≥ 0 for all M 6= M∗, the claim follows.

Algorithm 2 A parallel algorithm for bipartite perfect matching

1: For each e ∈ E, choose w(e) independently and u.a.r. from {1, . . . , 2m} . G has a unique min weight
PM M∗ with prob. ≥ 1/2

2: Compute det(D) in parallel
3: if det(D) = 0 then

return No perfect matching
4: end if
5: w∗ ← maximum k such that 2k | det(D) . w∗ = w(M∗)
6: for each e = uivj ∈ E in parallel do
7: Compute det(Dij) in parallel
8: if det(Dij) = 0 then
9: Stop considering e

10: end if
11: w∗e ← maximum k such that 2k | det(Dij) . w∗e ≥ w(M∗0) where M∗0 is a min weight PM in

G \ {ui, vj}; if e ∈M∗, then M∗0 = M∗ \ e is the unique min weight PM in G \ {ui, vj}
12: if w∗e + w(e) = w∗ then . We always have w∗e + w(e) ≥ w(M∗0) + w(e) = w(M∗0 ∪ {e}) ≥ w∗

return e
13: end if
14: end for

As long as the random weights of edges satisfy that G has a unique minimum weight perfect matching,
Algorithm 2 successfully finds it in parallel in polylog(n) time. Thus, the success probability of Algorithm 2
is at least 1/2 by the isolation lemma.

3

	Finding a Perfect Matching in Bipartite Graphs
	Sequential and Parallel Algorithms
	Parallel Algorithm for Bipartite Perfect Matching

