
PTDETECTOR: An Automated JavaScript Front-end
Library Detector

1st Xinyue Liu
dept. Computer Science and Engineering

University at Buffalo
Buffalo, USA

xliu234@buffalo.edu

2nd Lukasz Ziarek
dept. Computer Science and Engineering

University at Buffalo
Buffalo, USA

lziarek@buffalo.edu

Abstract—Identifying what front-end library runs on a web
page is challenging. Although many mature detectors exist on
the market, they suffer from false positives and the inability
to detect libraries bundled by packers such as Webpack. Most
importantly, the detection features they use are collected from
developers’ knowledge leading to an inefficient manual workflow
and a large number of libraries that the existing detectors cannot
detect. This paper introduces PTDETECTOR, which provides the
first automated method for generating features and detecting
libraries on web pages. We propose a novel data structure, the
pTree, which we use as a detection feature. The pTree is well-
suited for automation and addresses the limitations of existing
detectors. We implement PTDETECTOR as a browser extension
and test it on 200 top-traffic websites. Our experiments show
that PTDETECTOR can identify packer-bundled libraries, and
its detection results outperform existing tools.

I. INTRODUCTION

The rapid growth of the web environment makes simple

single-file JavaScript programs a thing of the past. Chrome

first supported ES6 modules in 2017 [1]. This browser-native

support for multiple file structures shows that JavaScript is no

longer the scripting language it was initially designed to be.

Instead, it is tasked with the responsibility of developing large,

complex web applications. Along with this, many JavaScript

libraries have been developed. Cdnjs, the largest CDN (Con-

tent Delivery Networks) built to serve websites, contains

4,366 different JavaScript libraries1. Based on a technology

survey [2], only 17.7% of websites use no JavaScript libraries.

JavaScript front-end library detection is helpful for com-

panies and researchers. From the industry perspective, library

detection is used for competitor analysis, sales intelligence,

and website profiling. Survey sites, such as W3Techs, will

provide these web market research services to companies.

Library detection also plays an important role in research.

Better library detection enables more detailed web dependency

modeling, thus improving the accuracy of web static analysis.

Besides, regarding web security, a group of practitioners ran

tests on 5,000 top websites and discovered that 76.6% of them

include at least one vulnerable library [3]. Library detection

techniques can efficiently find libraries with potential risks and

provide fixing recommendations.

1Data source: https://cdnjs.com (March 2023)

These days, many JavaScript library detectors exist. Some

are integrated into commercial web analytic platforms and

provide reports as a paid service, while others are open-source

Chrome extensions. These tools mainly use two kinds of detec-

tion features: globally defined library properties and the library

file name. However, our preliminary study indicates that both

features can lead to false positives due to their overly simple

detection mechanism. Additionally, existing library detectors

cannot handle libraries wrapped by packers, such as Webpack,

a module bundler that reorganizes the library file structure

and wraps the library into the local scope. Many reviews

of the detection extensions complain about their inability to

detect Webpack-bundled libraries. Worse, these features have

to be collected manually using developers’ knowledge about

the library, which is a labor-intensive and error-prone task.

The most popular detectors can recognize no more than 100

libraries to date. Although many concrete research works

regarding library automated detection have been proposed for

desktop and Android applications, they cannot directly apply

to websites due to huge environment differences.

To address these limitations, this paper makes the following

contributions:

1) We introduce the first automated JavaScript front-end li-

brary detector, PTDETECTOR. Our tool takes JavaScript

files and their dependency information as input and au-

tomatically extracts detection features using a trivial lo-

calhost client. We implement the detection component of

PTDETECTOR as a Chrome extension which is available

open-source on GitHub [4]. PTDETECTOR requires less

than 16MB to detect all libraries on Cdnjs.

2) We present a novel data structure — property tree (pTree)

— to depict the properties registered by the loaded library.

And we use a weight-based tree-matching algorithm to

score the existence possibility of libraries on the page. To

eliminate the impact of library dependencies and improve

performance, a series of algorithms are proposed for pTree

post-processing. Compared with the file name and property

analysis, the rich details provided by the tree structure al-

low PTDETECTOR to distinguish libraries more accurately

and detect libraries wrapped in local scope by packers.

3) We conduct a real-world study of PTDETECTOR on the

649

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00049

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

04
9

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

200 top-traffic ranking websites and benchmark against

the most popular open-source detector, LDC, and the most

popular commercial detector, Wappalyzer.

4) Our experimental results show that PTDETECTOR can out-

perform LDC and Wappalyzer and can identify Webpack-

bundled libraries.

II. BACKGROUND AND MOTIVATION

A. JavaScript Library in Front-end

JavaScript libraries are commonly designed to adapt to dif-

ferent runtime environments. The library’s APIs are composed

of functions wrapped in objects. These objects are registered

in the global context of the browser runtime, allowing the li-

brary’s APIs to be globally available. Listing. 1 uses simplified

code from a popular library Lodash2 as an example to present

the details of this process.

1 (function() {
2 function lodash(value) {
3 return new LodashWrapper(value);
4 }
5

6 // Define properties
7 lodash.chain = function(value) {
8 var result = lodash(value);
9 result.__wrapped__ = value;

10 return result;
11 }
12 lodash.differenceBy = ...
13 ...
14

15 // Export lodash
16 window._ = lodash;
17 }.call(this));

Listing 1. Simplified Lodash Browser Initialization Steps.

Listing. 1 presents a few key steps of the Lodash browser

initialization, which is executed when the library is loaded.

Line 1 defines an anonymous function to wrap all the code,

and line 2 defines the function lodash(value), which will

return an initialized object. Note that a function is also an

object in JavaScript. Then in Line 7 - Line 13, various jQuery

APIs (chain, differencyBy, and others) are registered

as lodash object properties. Finally, in line 16, the lodash
object is exposed to the identifier _ in the global context, i.e.,

registered as a property of window3.

There is no trivial way to know what library runs on a

web page. Since JavaScript libraries register objects to global

scopes, analyzing property names during browser runtime

is an important means of detecting front-end libraries. This

approach’s details will be expanded in Sec. II-B1.

B. Existing Detection Methods

Existing detection methods can be divided into two cate-

gories: dynamic and static. Dynamic methods detect JavaScript

properties during browser runtime, while static methods ap-

ply matching on various web content, including cookies,

DNS records, HTTP response headers, HTML source code,

2A modern JavaScript utility library delivering modularity and performance.
3Code running in a web page share single global object window.

JavaScript source code, and more. In the following subsec-

tions, we elaborate on these detection methods based on one

free tool (Sec. II-B1) and one commercial tool (Sec. II-B2).

1) Library-Detector-for-Chrome (LDC): LDC is the most

popular (based on GitHub star) open-source JavaScript library

detector. It was created in January 2010 and is still being

updated today. It has 600+ stars on GitHub [5] and 10,000+

users on the Chrome Extension Store [6]. As a browser

extension, LDC uses dynamic methods to detect libraries.

Listing. 2 is a simplified JavaScript snippet of the LDC source

code used to detect Lodash.

1 function testLodash () {
2 var _ = window._,
3 wrapper = _.chain(1);
4 if (_ && wrapper.__wrapped__) {
5 return {version: _.VERSION || UNKNOWN};
6 }
7 return false;
8 }

Listing 2. Dynamic Detection method of Lodash in LDC.

Listing. 2 examines two JavaScript properties: _ and

_.chain, in the global context. The Lodash function

chain will return a LodashWrapper object containing

the __wrapped__ property (line 9 in Listing. 1). In line

3 of Listing. 2, LDC calls the chain function and assigns

its return to wrapper. Next, in line 4, _ and wrapper
.__wrapped__ are checked. If both of them exist, Lodash is

assumed to be present, and then, in line 5, the library version

is retrieved from the property _.VERSION (return UNKNOWN
if not found).

2) Wappalyzer: Wappalyzer4 is one of the best com-

mercial web technology profilers. Its browser extension has

2,000,000+ users on the Chrome web store [7]. In addition to

libraries, it detects content management systems, e-commerce

platforms, server software, and analytical tools. In this paper,

we focus only on its ability to detect libraries. Wappalyzer

published part of its detection details on GitHub [8]. Listing. 3

is a simplified JSON snippet of its meta-code that detects the

Lodash library.

1 "Lodash": {
2 "js": {
3 "_.VERSION": "ˆ(.+)$\\;version:\\1",
4 "_.differenceBy": ""
5 },
6 "scriptSrc": "lodash.*\\.js",
7 }

Listing 3. Meta Data in Wappalyzer for Lodash Detection.

Two patterns are given in Listing. 3, containing both

dynamic and static methods. The “js” field, line 2, uti-

lizes JavaScript properties to perform the detection. It ex-

amines two properties in the global context: _.VERSION
and _.differenceBy. Line 6 provides a static method:

the scriptSrc field is matched with URLs of JavaScript

files included on the page. If any loaded JavaScript file name

matches the regular expression, Lodash is assumed to be

4https://www.wappalyzer.com/

650

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

detected. Compared with LDC, Wappalyzer’s detection policy

is more lenient — as soon as one of these three conditions is

met, Wappalyzer assumes that Lodash is detected.

C. Limitation of Existing Methods

Existing detection methods inevitably lead to false detec-

tions. Due to the lack of namespaces in JavaScript, global

property conflicts are common among JavaScript libraries; i.e.,

different libraries often define properties with the same name

on the window object. Jibesh et al. [9] analyzed 951 libraries

and found that one out of four is potentially conflicting.

Therefore, detection based on a few properties can easily

lead to false positives (Sec. II-C1). Moreover, the interference

of packers such as Webpack(Sec. II-C2) and the labor cost

(Sec. II-C3) required to maintain high-level detection are also

major limitations.

1) False Positive: The selection of property is crucial to the

accuracy of the dynamic detection method. On Netflix 5 home

page, we found that LDC misidentified Underscore.js 6 library

as Lodash. After manual inspection, this false identification

can be attributed to two aspects. First, Underscore.js also

defines a global _ property and a _.chain function, the same

as Lodash. Second, we found that the website developer modi-

fied the Underscore.js library and defined the __wrapped__
property in the return of chain, which satisfies the condition

(Listing. 2 line 4) for mistakenly detecting Lodash in the LDC.

For Wappalyzer, the situation is even worse. It determines

that Lodash exists as soon as it detects the presence of

_.VERSION ((Listing. 3 line 3), which is also present in the

Underscore.js library. Therefore, Wappalyzer completely loses

the ability to distinguish Lodash from Underscore.js.

The static detection method is not reliable either. It is a

common practice for web developers to reorganize library files

when importing locally. For example, on the “weather.com”

web page, we found Wappalyzer misidentified Lodash because

it matched a loaded local JavaScript file named “46202.lo-

dash.0c9c71f173e278ac6235.js”. This file name satisfies the

regular expression given at line 6 in Listing. 3. But when

we open this file, its contents are actually “react .produc-

tion.min.js”, a component of the React framework.

2) False Negative: False negatives are often seen due to the

widespread usage of the Webpack, which is a module bundler

published in 2012 to solve the global variable conflict problem.

According to an industry report [10], as of March 2023, there

are 15,448,980 websites built with it. Webpack wraps library

APIs that would otherwise be defined globally into a local

scope and splits a library file into multiple chunks to be loaded

separately. As a result, libraries bundled by Webpack are no

longer detectable by any existing tools.

3) Labor Cost: Another limitation of existing tools is

that they require continuous human resources to maintain

high accuracy. Over 4,000 front-end JavaScript libraries are

currently on Cdnjs alone, each constantly being updated with

5A well-known TV streaming website: https://www.netflix.com/
6A library that provides functional programming helpers.

newer versions. For example, React has 531 versions recorded

on Cdnjs. Trying to adapt the detector to so many libraries and

versions manually can be time-consuming and error-prone.

III. DESIGN

Our tool PTDETECTOR follows the dynamic detection ap-

proach — using the libraries’ runtime properties to identify.

However, unlike LDC or Wappalyzer, which only validates a

small number of properties, PTDETECTOR utilizes the prop-

erty tree as the feature and detects the library by runtime-

matching similar tree structures. We name such tree struc-

ture built on property relationship as pTree, elaborated in

Sec. III-B. Fig. 1 shows part of Lodash’s and Underscore.js’s

pTrees. The complete pTrees of these two have 258 and 157

vertices respectively. The rich property information allows

PTDETECTOR to effectively distinguish even similar libraries,

thus avoiding false positives mentioned in Sec. II-C1. Besides,

PTDETECTOR is not limited to matching only in the global

context - the search scope is the entire pTree rooted at the

window of the page - so it can detect Webpack-bundled

libraries.

Fig. 1. Part of pTrees of Lodash and Underscore.js.

Most importantly, PTDETECTOR presents a way to automat-

ically collect the pTree using a self-built web client. In this

paper, we propose an algorithm to assign different weights to

each vertex of the pTree, allowing the matching to accom-

modate small library changes. These changes may come from

the library users’ modifications or version differences. With

the automation pipeline, a large number of libraries’ detection

features can be collected quickly, which gives PTDETECTOR

a considerable advantage over existing tools regarding the

number of libraries it can detect.

A. System Overview

PTDETECTOR is a browser extension to give scores to all

possible JavaScript files loaded on the web page. A score of

100 indicates an exact match, and a score of 0 indicates no

possibility of existence. Note that PTDETECTOR’s detection

target is the file, not the library. One library may contain

multiple JavaScript files. The discussion of extending file

detection to library detection is in Sec. IV-A1.

PTDETECTOR uses pTree as the detection feature. The

definition and generation algorithm of pTree are given in

Sec. III-B. Several processing steps on the pTree are nec-

essary to promote detection effectiveness, including random-

generated vertices removal to eliminate non-determinism; root-

pruning to prevent the impact of dependencies; credit assign-

ment, which allows matching to accommodate small changes;

tree trim to save storage space; and inverted indexing to

651

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

increase matching efficiency. These steps are expanded in

Sec. III-C with the workflow graph in Fig. 2. Finally, the

pTree matching algorithm is applied during browser runtime

detection, whose detail is disclosed in Sec. III-D.

B. Property Tree: pTree

1) pTree Definition: As the core concept of PTDETECTOR,

pTree refers to a tree formed by the property relationship

between JavaScript variables at a runtime frame. We propose

this novel data structure to achieve a more accurate character-

ization of the objects registered by JavaScript libraries and to

enable better runtime library detection based on tree similarity

matching. Formally, if we use the symbol �f� to denote the

set of all JavaScript variables at a runtime frame f , and ζv to

denote the variable represented by the vertex v, the pTree Tf

is a tree that meets following requirements:

For each vertex v ∈ V [Tf], we have ζv ∈ �f�;

For each edge (p, c) ∈ E[Tf], where p is c’s parent,

we have ζp is an object, and ζc is a property of ζp.

For each vertex v, we assign it three attributes: ζv’s name,

type, and value (only if ζv has a meaningful value). In the

later tree-matching algorithm, a vertex is considered matched

only if all three attributes match. Vertex types’ categories and

corresponding values are shown in Table I. JavaScript value

types can be divided into two categories: primitive types and

object types. Primitive types include null/undefined, number,

string, and Boolean. For null/undefined, it does not have a

meaningful value. For numbers and strings, to save storage

space, their values are shortened7 as shown in Table I.

TABLE I
SIX VERTEX TYPES OF PTREE USED IN THIS PAPER.

Category Type Value Children

primitive
types

null / undefined -
number v.toFixed (3)
string v.slice (0, 10)
Boolean v

object types
array / set / map v.length
other object - �

Any JavaScript value other than primitive types is an object.

Here we separate object type into two classes: one is “array

/ map / set”; another is “other object”. Array, map, and set

are JavaScript built-in objects used to store elements (i.e.,

properties from the object’s view). Therefore, we use the

number of elements as their value and do not recursively check

the properties of these vertices to avoid oversizing the tree. As

a result, among the six vertex types in Table I, only the “other

object” can have children vertices in the pTree we build.

2) pTree Generation: Given a variable v as root, we can

generate a pTree by the following steps. Step I creates a

vertex v and determines its type. Primitive types can be

determined by the typeof() function; Object types can

be determined by comparing objects’ prototype8. Step II,

7As far, our experiment using the shortened value has not led to ambiguity.
8For example, we can determine whether an object O is an array using the

such equation: Object.getPrototypeOf(O)===Array.prototype

based on v’s type, gets v’s value following the instruc-

tion in Table I. Step III, if n belongs to “other object”,

usesObject.getOwnPeopertyNames(n)9 to get ζv’s

properties. For each of them, repeat Step I and append it as

v’s child. Notice that if a property of v points to an ancestor

variable, then we should skip this property; otherwise, the

algorithm will not end.

We leverage a trivial localhost client to generate the pTree.

The client will host an empty web page to load the target

JavaScript file. Once the file is loaded, we use window as the

root for pTree generation. In this process, we only care about

the new global variables defined by this file. On an empty web

page, 850 properties are already defined on the window object

in our browser environment. We omit these native properties.

Subsequent mentions of generating pTree on the web page all

follow the above process.

C. Feature Generation

Fig. 2 depicts PTDETECTOR’s feature generation system

workflow. The input to the system is a JavaScript file list. Each

entry includes basic file information and its dependencies.

PTDETECTOR will load the file with dependencies in localhost

web pages and generate the pTree. The system’s output is a

JSON file “pt.json” containing all pTree information of these

files. This workflow has three main sections. The first part is

the generation of pTree while eliminating the impact of depen-

dencies (Sec. III-C1). The second part is the post-processing

of the pTree, whose core task is vertex credit assignment

(Sec. III-C2). In the end, all generated pTree will be stored in

an inverted indexing layout JSON file (Sec. III-C3).

1) Dependency Elimination: Some library files need other

files to be loaded before them, which we call outer depen-
dencies. For ease of use, some libraries copy the required

dependencies directly into their own files, and we call them

inner dependencies. The existence of dependencies in the

feature generation stage can increase the possibility of false

positives during detection. Assume the target file A has a

dependency B. Because B must be loaded to run A, the

generated feature will contain information from both files.

To remove the interference of dependencies, we use two

clients to generate pTrees separately and calculate the dif-

ference between two pTrees. For the first localhost client

(upper one in Fig. 2), we load outer dependencies and inner

dependencies to get the dependency pTree dpT ; For the second

localhost client (lower one), we load the target file and its outer

dependencies. In addition, we observed that some files define

random variables10. To eliminate the randomness in detection,

we generate pTree twice in the second localhost client and

remove all different vertices to get a stable full pTree fpT .

Then we remove those vertices in fpT that are also present

in dpT . We call this process root-pruning and refer to the

9Object.keys(n) can also return properties of an object, but non-
enumerable ones are omitted. Some libraries may register all properties as
non-enumerable. Velocity.js (v 2.0.6) is a case.

10Some libraries, such as jQuery, use random numbers to name some
properties, which will result in a lower match score, thus reducing the recall.

652

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. PTDETECTOR Feature Generation Workflow.

tree after deletion as the root-pruned pTree rpT . Simply put,

rpT = fpT − dpT .

Algorithm 1 Root-pruning Algorithm

Input: full pTree: fpT , dependency pTree: dpT
Output: root-pruned pTree: rpT

1: rpT ← new Vertex(window)
2: Q1, Q2 := queue initialized with fpT ’s / dpT ’s root

vertex

3: while Q1 �= ∅ do
4: u, v ← remove vertex from the front of Q1 / Q2

5: for each child s of u do
6: if ∃ t ∈ v’s children, having s = t then
7: insert s / t to the end of Q1 / Q2
8: else
9: append the subtree rooted at s as rpT ’s child

10: end if
11: end for
12: end while

Algo. 1 is the pseudocode of the root-pruning algorithm.

The inputs to the algorithm are two pTrees: fpT and dpT .

The output is the root-pruned pTree rpT . First, we create a

new vertex, representing window, as rpT ’s root in line 1. Then,

in line 2, two queues are initialized for a BFS from line 3 to

line 12. While traversing children vertices in fpT , we check

whether there is an identical vertex in dpT (line 6) — i.e., the

path and three attributes of the vertex are all identical. If not,

in line 9, we append the subtree rooted at this vertex as the

child of rpT and stop traversing on this subtree.
Fig. 3 uses jQuery UI to demonstrate the root-pruning

procedure. jQuery UI is a UI library built on top of jQuery. The

left part of Fig. 3 shows the simplified pTree generated from

the “jquery-ui.js” file. Those vertices also present in jQuery

pTree are colored black, and others are colored orange. In

Algo. 1, we detect all orange subtrees in fpT and combine

them into a new tree rpT , shown in the right part of Fig. 3.

Considering that rpT needs to be expanded into a complete

tree for matching, each subtree should have its original path

recorded. For example, in Fig. 3 rpT , the original path of the

subtree rooted at the vertex labeled “slider” is “[jQuery, fn]”.

Fig. 3. Root-prune Demonstration (jQuery UI library).

2) pTree Credit: In pTree, each vertex is not equally

important for prediction. In order to make the matching

able to accommodate small changes from the library users’

modifications or version differences, we assign each vertex a

credit. The total credit of one pTree is set to 100. We design

the vertex credit assignment rule based on two intuitions:

1) The smaller the depth, the higher the importance;

2) The larger the subtree size, the higher the importance.

The first intuition is that the high-level architecture of the

library generally does not change. What changes are specific

values or functions, i.e., the leaf vertices in a pTree. The

second intuition comes from the following observation: the

number of children of a vertex can reflect the number of APIs

provided by the corresponding object, and objects with more

APIs are more representative.

Now we define these intuitions formally. For a vertex v in

the pTree, let d denote depth of v, D denote depth of pTree,

|Tv| denote the number of vertices of the subtree rooted at v,

then the credit of v can be calculated using the equation:

credit =
2D−d

2D − 1
· |Tv|∑

u.depth=d |Tu| · 100 (1)

The first half of Eq.(1) ensures that the sum of credits in one

layer of the pTree is twice that of the next layer. The credit

of depth zero is 0, because window will not participate in

653

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

the matching. The maximum credit starts from depth one and

decreases in geometric progression from layer to layer. The

second half of the equation shows that vertices in one layer

are assigned credits equally using subtree size as weight.

Another necessary operation is trimming the tree size. Some

libraries have pTree with over 10,000 vertices. Using all the

vertices as the feature will take up too much browser space

and slow the detection speed. To retain high-credit potential

vertices, trimming follows such preferences: (1) drop vertices

with deeper depth; (2) at a given depth, drop vertices with

smaller subtree size. Note that the trimming operation will lose

subtree size information while discarding redundant vertices,

which is a key parameter in Eq.(1). Hence, in the post-

processing stage (green boxes in Fig. 2), the first step is to

calculate the subtree size of each vertex in the rpT . Then, the

pTree will be trimmed to a smaller tree based on vertex number

and depth requirements. After that, the credit calculation will

be conducted on the trimmed tree.

3) Inverted Indexing: To enable matching, the rpT will be

expanded into a normal tree after credit assignment. Fig. 4

left is the expanded tree from the rpT in Fig. 3. Intermediate

vertices (blue dotted nodes) added according to subtree path

records will be assigned zero credit. Here the root vertex

“window” is no longer needed because it is not a property

defined by the library. We remove the root and split the pTree

into sub-pTrees (right part in Fig. 4). The root vertex name of

each sub-pTree is the identifier. In our example, file “jquery-

ui.js” has two identifiers: “jQuery” and “$”.

Fig. 4. Sub-pTree generation. Blue dotted vertices are added vertices.

To promote the efficiency of later tree matching, we or-

ganize generated sub-pTrees in the inverted indexing layout.

Specifically, we combine all sub-pTrees with the same iden-

tifier and use it as their index. Fig. 5 shows an example of

the inverted indexing table. The leftmost column lists all the

identifiers, which map to sub-pTrees in different files. When

one identifier is detected during runtime, its mapping sub-

pTrees will be considered in the matching calculation. In

the end, the inverted indexing table is stored in a JSON file

“pt.json”, and we minimize it into a compact representation.

D. Runtime Detection

We implement the PTDETECTOR detection ability as a

browser extension. Once the extension’s button is clicked, the

detection procedure will start on the current web page. The

Fig. 5. Inverted indexing table mapping identifiers to sub-pTrees.

libraries’ scores will be listed as the detection result in the

extension popup window.

Fig. 6. PTDETECTOR Detection Workflow.

Fig. 6 depicts the detection workflow of PTDETECTOR.

First, it generates the pTree rooted at window on the target web

page. We limit the max depth of pTree to three to avoid the

tree being too large. Then, we traverse the pTree and collect

all vertices that have the same name with identifiers (e.g.,

“$” and “ ” in Fig. 6). Next, based on the inverted indexing

table, we use these vertices as targets for tree similarity

computation (Algo. 2) with all relevant sub-pTrees indexed

by the identifier. Each sub-pTree corresponds to one file, so

after the computation, each file can get a score that represents

the similarity of that file at the current vertex. There are two

details to consider here. First, one file may link to multiple sub-

pTrees. Hence, if several vertices with the same path index to

a single file, the file score should be the sum of these vertex

scores. Second, one web page may import a JavaScript file

multiple times in different places. Thus, if one file is detected

under more than one path in the web page pTree, we take the

highest one as the final score of this file on the current page.

Finally, we can get a list of all detected JavaScript files and

display them in score descending order.

Algorithm 2 pTree Similarity Comparison Algorithm

Input: target pTree: tpT , sub-pTree: spT
Output: similarity score: S

1: Initialization: S ← 0
2: Match vertex count: cnt← 0
3: for each vertex u ∈ V [tpT] do
4: for each vertex v ∈ V [spT] do
5: if u.path = v.path and u.name = v.name and

u.type = v.type and u.value = v.value then
6: S ← S + v.credit, cnt← cnt+ 1
7: end if
8: end for
9: end for

10: if cnt = 1 then
11: S ← 0
12: end if

654

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

Algo. 2 shows the detail of pTree similarity comparison.

There are two inputs: tpT, the pTree generated from a variable

in the browser context, and spT, a sub-pTree from the inverted

indexing table. The algorithm will traverse two pTrees and

examine all match vertices. Two vertices match if and only if

they have the same tree path and three attributes (name, type,

and value) mentioned in Sec. III-B1. The value of the score is

the sum of the credits of all matching vertices. Besides, we use

a variable cnt (line 2) to record the matched vertex number.

To reduce false positives, if only one vertex matches, we set

the score as zero (line 11).

IV. EVALUATION

This section investigates the version agnostic detection

ability of PTDETECTOR on front-end JavaScript libraries on

real-world web pages. In Sec. IV-A1, we discuss our dataset.

We answer two research questions: RQ1 (Sec. IV-B1), how

does PTDETECTOR compare to LDC and Wappalyzer? RQ2

(Sec. IV-B2), what are the best settings of our tool? Experi-

ment data are also provided on GitHub [11].

A. Experiment Setup

1) Library Collection: To make the comparison unbiased,

the target libraries are taken from the intersection of the

technique lists11 of LDC and Wappalyzer. As of March 15,

2023, 112 web techniques (including libraries) can be detected

both by LDC and Wappalyzer, among which we need to

filter out front-end JavaScript libraries. However, it is difficult

to determine whether a technique belongs to the front-end

JavaScript library since many techniques can accept multiple

runtime environments. Considering that almost all front-end

libraries mount their code on CDN for convenient HTML

hyperlink importing, we pick all techniques that have code

mounted on the Cdnjs platform or have CDN links provided

on their official websites. Based on this, 83 techniques meet

our requirements.

For each library, we use its latest version for feature genera-

tion. One library version may contain multiple JavaScript files,

and we assume that the library is present if and only if at least

one of its JavaScript files is loaded. Thus, adding all files of a

library version into feature generation is unnecessary. In most

cases, multiple files within a version have inter-dependencies.

We call those that do not rely on other files as the library base
files. It is obvious that a library has at least one base file, and

if the library is imported into the page, then at least one of its

base files must exist. As a result, we can only consider library

base files as the detection target. If a library has more than one

base file detected on the web page, then the similarity score

of the library is taken as the highest score among the base

files. Most libraries provide two file versions for one snippet

of JavaScript code — an original and a minified one. Since

they do not differ under dynamic detection, we use only the

minified version. This results in 99 JavaScript base files out

of 83 libraries as our experiment dataset.

11Detectors normally disclose the web techniques they can detect on their
official websites, including libraries.

Acquiring the accurate dependency information of each file

is critical to detection precision. However, due to the lack

of a unified management system, there is no trivial way to

determine the dependencies of front-end libraries. For each

base file, we manually check its inner and outer dependencies.

Outer dependencies can be easily obtained from the library’s

official website instructions, while inner dependencies are

hard to determine. Based on their source code, we carefully

compare and verify other libraries contained in the file. In the

end, we found 14 base files requiring outer dependencies and

8 base files having inner dependencies.

2) Website Collection: First, we select the top 200 websites

from the SEMRUSH websites ranking [12], which is based on

the US traffic on all categories of websites. We use the home

page of each website as our testing web page. The ground

truth of libraries these web pages use is necessary for the

later comparison. Considering that no existing ground truth is

provided, we determine ourselves using the following strategy.

First, we manually apply three detectors — PTDETECTOR,

LDC, and Wappalyzer — on each web page. To discover as

many potential libraries as possible, here we set PTDETECTOR

score threshold t as 0, i.e., library is assumed present as long

as the score is larger than zero. For those pages where most of

the content is displayed only after login, we use a temporary

account for login and then perform library detection. Next, we

take a union of all libraries detected by the three detectors12,

and carefully verify the existence of these libraries. Verifica-

tion includes comparing web page JavaScript code, checking

HTML information, investigating detectors’ source code, and

browsing the development blogs of the websites. During this

process, we found that many web pages only contain jQuery or

core-js, the most common two front-end libraries. To increase

the diversity of libraries in the experiment, we exclude web

pages that only contain jQuery or core-js and those that do not

contain any library. Finally, with great effort, we arrive at a

dataset that contains 80 web pages with 36 different libraries

and 306 library occurrences.

3) Specification: We implement the detection component

of PTDETECTOR as a Chrome extension. All the experiments

are conducted on macOS Ventura (V 13.2.1) with an Apple

M1 chip and 8G memory. All the web pages are opened

on Chrome 110.0.5481.177 (Official Build) (arm64). This

configuration is close to how everyday users use the browser.

B. RQ1: Comparison of Detection Tools.

1) Feature Analysis: We apply the PTDETECTOR feature

generation workflow on our library dataset — 99 JavaScript

files from 83 libraries. During pTree generation, we limit

the max number of vertices to 10,000 and the max depth to

100, and get 99 pTrees in total. Table II lists size (number

of vertices in the pTree), depth, number of back edges, and

number of identifiers of each pTree. Back edges occur in

12Here, we assume that libraries not detected by any detector are not
present. On the one hand, the probability of being missed by all three detectors
simultaneously is low. On the other hand, these missed ones will not affect
the comparison result between detectors.

655

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

the pTree generation algorithm. We removed them during the

feature generation to prevent cycles. The number of identifiers

equals the number of sub-pTrees for each file.

TABLE II
PTREE STATISTICS.

Size Depth # Back Edges # Identifiers
Average 1239.6 4.6 9.7 4.1
Median 112 4.0 0 1

Max 10000+ 15 244 68
Min 3 1 0 1

Table II shows that the range of the pTree sizes is large.

The library with the smallest pTree size, Web Font Loader13,

only provides one function and one object to wrap the function.

While the library with the largest pTree size, Ink14, has a pTree

with over 10,000 vertices. The number of back edges ranges

from 0 to 244, and 64 pTrees do not have a back edge. In

most cases, back edges come from the copy of the reference

to the window or the outermost wrapping object. The number

of identifiers ranges from 1 to 68, and 57 files only have one

identifier, which implies just one outermost object is used to

wrap all contents.

The distributions of pTree’s size and depth are shown in

Fig. 7. Most sizes are between 10 and 1,000, and most depths

are between 1 and 6. The good news is that only a few pTrees

(9 / 99 = 9.1%) have less than ten vertices since too few

vertices will affect the detection accuracy. On the other hand,

too many vertices will reduce the detection efficiency, so pTree

trimming is necessary. In this research question, we trim all

pTrees with size and depth limits as 50 and 5.

Fig. 7. Histogram of pTree’s Size and Depth Distribution.

2) Web Page Detection: We load generated pTree features

into PTDETECTOR and apply it to our dataset. After opening

a web page, we wait 20s to ensure all libraries finish loading.

PTDETECTOR traverses the first three layers in the web

page’s pTree to match identifiers and checks pTree similar-

ity (Algo. 2). PTDETECTOR detects 289 library occurrences

(score > 0). Among them, 263 have identifiers matched in the

first layer, 19 in the second, and 7 in the third. Libraries with

identifier layer depth larger than one are not imported in the

browser’s global context (may utilize techniques like packers)

and thus cannot be found by other detectors. This means that

our tool has the full ability to detect bundled libraries.

13https://github.com/typekit/webfontloader
14https://ink.sapo.pt/

Table III shows the detection result comparison of PT-

DETECTOR, LDC, and Wappalzer. We use three metrics to

measure the detection performance — accuracy, precision,

and recall15. Surprisingly, LDC as an open-source software

exceeds the commercial tool Wappalyzer on all three met-

rics. Therefore, we use the better-performing LDC as the

benchmark for PTDETECTOR. Fig. 8 presents the detection

performance of PTDETECTOR under score threshold t ranging

from 50 to 85. The dashed lines in the figure mark the

precision and recall value of LDC as benchmarks.

TABLE III
DETECTION PERFORMANCE COMPARISON.

PTdetectorLDC Wappalyzer
t = 57 t = 70 t = 77

Accuracy 99.10% 98.63% 99.41% 99.43% 99.25%
Precision 96.59% 94.61% 96.84% ↑ 100% 100%

Recall 83.33% 74.51% 90.20% 87.58% 83.66% ↑

Fig. 8. PTDETECTOR Detection Performance (Compared with LDC).

In Fig. 8, the accuracy of PTDETECTOR always maintains

a high level. This is because the value of TN far exceeds

that of TP, FN, and FP. A website loads an average of 3.8

libraries in our ground truth dataset, but the tools check for 83

libraries. Therefore, most library tests are negative, resulting

in large TN. As a result, accuracy can not exhibit performance

differences in this experiment.
As threshold t increases, PTDETECTOR’s precision keeps

increasing while recall keeps decreasing. When t ≥ 57, the

precision of PTDETECTOR exceeds LDC’s; when t ≤ 77,

the recall of PTDETECTOR exceeds LDC’s (“↑” marks in

Table III). Overall, when 57 ≤ t ≤ 77, PTDETECTOR

outperforms LDC and Wappalyzer on all three metrics. And

when t = 70, PTDETECTOR achieves high precision and recall

— 100% and 87.58%.
For each library, we record the number of its occurrences

in our dataset and calculate the average score given by

PTDETECTOR (0 if not detected). Table IV lists the top ten

and last ten libraries based on avg. score ranking. Interest-

ingly, the six libraries with an avg. score below 80 except

Modernizr16 all belong to frameworks. Strictly speaking, the

15Accuracy= TP+TN
TP+TN+FP+FN

, precision= TP
TP+FP

, recall= TP
TP+FN

.
16A feature detection library mainly used on the back-end. The files

mounted on Cdnjs are old versions, leading to a low average score.

656

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

JavaScript libraries and frameworks are different. The former

is reusable code with a single primary use case. The latter

is a set of JavaScript codes that provide pre-written code for

everyday programming tasks to web developers. Most of the

core code of the framework is on the back end, aiding the

developer’s work. The code mounted on CDN is commonly

their runtime debugging tool, which is optional to load. As a

result, PTDETECTOR failed to achieve satisfactory detection

on these frameworks.

TABLE IV
PTDETECTOR DETECTION SCORE RANKING OF LIBRARIES.

No. Library avg.
score cnt

1 Lo-dash 100 21
2 IfVisible.js 100 4
3 WebFont 100 1
4 Head JS 100 1
5 Kendo UI 99.9 1
6 Prototype 99.8 1
7 Pusher 99.4 2
8 jQuery 99.1 60
9 RequireJS 99 12

10 Moment.js 98.7 6

No. Library avg.
score cnt

27 SWFObject 88.1 1
28 Backbone 87.8 8
29 Knockout 82.1 1
30 Bootstrap 79.5 7
31 Ext JS 75.4 1
32 Preact 74.7 1
33 Modernizr 65 12
34 React 11.4 28
35 Vue 0 3
36 Angular 0 1

Frameworks have various architectures, and automating

their detection is hard. Luckily, the number of commonly used

frameworks is small, and some provide official browser exten-

sion tools for detection: “React Developer Tools” for “React”

and “Vue.js devtools” for “Vue”. Hence, PTDETECTOR could

combine these existing tools for better framework detection.

Fig. 9. PTDETECTOR Performance after Excluding Frameworks.

Fig. 9 shows the performance of PTDETECTOR after exclud-

ing six frameworks. Recall has been significantly improved

compared to Fig. 8. When t reaches 68, the precision achieves

100%. At the same time, the recall is 98. 11%, much higher

than the recall of 83.33% of LDC (out of range in Fig. 9).

RQ1 Conclusion: When the threshold is set within a

reasonable range (57 to 77), PTDETECTOR’s detection

ability outperforms LDC and Wappalyzer in all metrics,

even in the presence of libraries wrapped by packers.

C. RQ2: Best Trim Settings of PTDETECTOR.

In PTDETECTOR, we trim a pTree into a smaller version

to prevent oversizing. The trim size and depth setting will

affect the detection performance and efficiency. To answer this

research question, we examine the performance, overhead, and

space of PTDETECTOR under different trim settings. We fix

the trim depth limit to five. According to Eq.(1), where vertex

credit decreases in geometric progression as depth grows, the

sum of credits outside of the first five layers is less than 1/32,

which has little effect on the final score. As a result, we only

need to focus on investigating the impact of the size limit.

We apply PTDETECTOR with eight different size limits and

repeat the detection steps in RQ1. We calculate three values —

AUC, “avg. Time”, and “Space per Lib”, shown in Table V,

to measure the detection performance, overhead, and space

requirement of PTDETECTOR. AUC represents the area under

the ROC curve, providing an aggregate performance measure

across all score thresholds. “avg. Time” is the average time

spent on detection for all web pages, starting from detection

and ending at the result display. For each web page, we

ran the test program five times and averaged the test time

for this page to mitigate the impact of network fluctuations

on timing. We use “avg. Time” to measure the overhead

of PTDETECTOR. “Space per Lib” is obtained by dividing

the size of the generated JSON file, which stores the pTree

inverted indexing table, by the number of libraries.

TABLE V
AUC, TIME, AND SPACE UNDER EIGHT SIZE LIMIT.

Size Limit AUC avg. Time (ms) Space per Lib (KB)
5 0.8688 790.16 0.40
10 0.8737 755.31 0.84
25 0.9342 777.69 2.02
50 0.9422 772.81 3.60
100 0.9374 806.77 6.36
200 0.9325 790.34 10.41
500 0.9241 770.56 18.84
1000 0.9192 777.20 28.35

Fig. 10 presents the data in Table V as line graphs. The

figure shows that the AUC is low when the size limit is less

than 10. The AUC rises sharply when the size limit increases

from 10 to 50. However, after 50, the AUC decreases slowly

until the size limit reaches 1000. This result is counter-intuitive

at first glance, considering that a larger size limit implies richer

information. We use the latest version of each library during

feature generation, but the actual web page may use a different

version. Thus, the larger the size of pTree, the more negatively

it affects the detection performance when the version of the

library from which pTree was built differs from the version of

the library loaded by the web page.

The mid plot in Fig. 10 shows the “avg. Time” trend. We

can see that the detection time does not show regular changes

as the size limit increases. This occurs because the detection

time is greatly affected by network fluctuations. Additionally,

the detection time depends on the pTree structure of the web

page and not the size of pTrees collected from libraries.

The plot on the right in Fig. 10 shows the usage of space. As

the size limit goes up, “Space per Lib” shows approximately

linear growth. If we consider using 50 as the size limit to

store pTree information for all libraries on Cdnjs, the required

657

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. The Trend of AUC (left), Time (middle), and Space (right) under Different Size Limits.

space would be 4366 × 3.6KB = 15.31MB. This is within

the acceptable range for a browser extension.

RQ2 Conclusion: PTDETECTOR achieves the highest

detection performance around a size limit of 50 with

an average detection in less than 800ms. Space usage

is acceptable (4366 libraries in less than 16MB).

V. THREATS TO VALIDITY

Our analysis is limited to the top 200 trafficked websites,

which are mainly large portal sites. Considering that the

libraries that different types of websites use may be different

that those in our data set, we cannot ensure that the experimen-

tal results of this paper generalize to all websites. Additionally,

only the 36 most commonly used libraries are included in our

experiments. For libraries not present in our data set, there

may exist potential factors affecting the performance of the

PTDETECTOR.

VI. LIMITATION

Although PTDETECTOR shows good performance, some

limitations still exist. The first is the inability to detect library

versions. Today, there are 2,509,859 library versions on Cdnjs.

With a size limit of 50, over 8G space is needed to store all

their feature information. One approach is to conduct two-layer

detection, i.e., detecting the libraries first and then performing

specific version detection after generating just-in-time pTrees

for each version. This is our future work.

Another limitation lies in module detection. ES6 module is

a new browser library importing mechanism that allows partial

library loading. Our pTree matching algorithm is based on the

assumption that the library is always loaded entirely. However,

our observation shows that the ES6 module is not popularized

among websites. Developers still prefer to use the traditional

library loading method. None of the top 200 websites use the

ES6 module.

The dependency requirement is also a limitation. PTDE-

TECTOR requires accurate dependency information for each

JavaScript file as input. However, dependency information can

only be collected manually, greatly limiting the tool’s automa-

tion level. In fact, PTDETECTOR, with a few modifications, is

also capable of automatic dependency detection. This also is

our future work.

VII. RELATED WORK

Library Detection. Although, to the best of our knowl-

edge, we are the first to investigate library detection for web

applications, many approaches have been proposed to detect

third-party libraries for desktop and Android applications. The

common strategy is extracting features from the source code

and matching the binary program library. Binary Analysis Tool

(BAT) [13] is a representative binary matching method that

utilizes constant values as the detection feature and applies a

frequency-based ranking method to identify the presence of

libraries. OSSPolice [14] introduces a hierarchical indexing

scheme to better use the constant information and the sources’

directory tree. This data structure inspired us to design an

inverted indexing table to store pTrees. Then BCFinder [15]

makes the indexing lightweight and the detection platform-

independent. B2SFinder [16] synthesizes both constant and

control-flow features from binary based on their importance-

weighting methods, giving more reliable library detection

results. Xian Zhan et al. [17] conducted the first empirical

study on existing Android library detection techniques and

proposed tool selection suggestions. ModX [18] introduces a

novel algorithm to detect partially loaded libraries via semantic

module matching. Unfortunately, these methods cannot adapt

to the web environment due to the vast differences between

web and traditional applications.

Web Library Analysis. Many kinds of library analysis

work have been done. Feldthaus et al. [19] present a pragmatic

approach to check the correctness of TypeScript files with

respect to JavaScript library implementations. Erik et al. [20]

explore the concept of a reasonably-most general client and

introduce a new static analysis tool for TypeScript verifica-

tion. Patra et al. [9] present an automated method to detect

JavaScript libraries’ conflicts and show that one out of four

libraries is potentially conflicting. Moller et al. [21] develop

the tool Tapir that finds the relevant locations in the client code

to help clients adapt their code to the breaking changes. Wyss

et al. [22] propose a tool to programmatically detect hidden

clones in npm and match them to their source packages. Their

tool utilizes a directory tree as a detection feature, which does

not apply to the front-end library.

Analysis of JavaScript. The JavaScript analysis research

can be divided into two main topics: static analysis and

dynamic analysis. According to an empirical study [23], static

has been the most dominant research topic for client-side

658

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

JavaScript applications. Numbers of work focus on extending

analysis scope, including dynamically loaded code [24], [25],

dynamic features [26], [27], and DOM [28], [29]. Another

static analysis trend is to improve the analysis precision

by handling dynamic features and loops more elaborately.

To address dynamic features, various hybrid approaches are

proposed [30], [31], [32], [33]. For loops, researchers also

proposed techniques to analyze them precisely [34], [29].

Because of the extremely dynamic nature of JavaScript,

dynamic analysis is also an active research topic. Several

testing techniques have been proposed to address language-

specific features [35], [36], [37], [38]. To enhance the dynamic

analysis coverage, crawling and dynamic symbolic execution

techniques have been proposed [39], [40], [41].

VIII. CONCLUSION

JavaScript front-end library detection is a long-standing

challenge. This paper introduces PTDETECTOR, which pro-

vides the first automated method to detect JavaScript front-

end libraries on web pages. Using JavaScript library files and

their dependencies as input, the system generates pTrees as the

detection feature. Our experiments on real-world web pages

show that PTDETECTOR can identify packer-bundled libraries

and its detection results outperform LDC and Wappalyzer in

all metrics when the threshold is reasonably set.

REFERENCES

[1] S. Thorogood, “Es6 modules in chrome m61+,” 2015, https://medium.
com/dev-channel/es6-modules-in-chrome-canary-m60-ba588dfb8ab7.

[2] W3Techs, “Usage statistics of javascript libraries for websites,” 2023,
https://w3techs.com/technologies/overview/javascript library.

[3] T. Kadlec, “77% of sites use at least one vul-
nerable javascript library,” 2017, https://snyk.io/blog/
77-percent-of-sites-use-vulnerable-js-libraries/.

[4] X. Liu, “Ptdetector on github,” 2023, https://github.com/aaronxyliu/
PTdetector.

[5] GitHub, “johnmichel/library-detector-for-chrome,” 2023, https://github.
com/johnmichel/Library-Detector-for-Chrome/.

[6] C. E. Store, “Library detector — developer tool,” 2023,
https://chrome.google.com/webstore/detail/library-detector/
cgaocdmhkmfnkdkbnckgmpopcbpaaejo.

[7] C. W. Store, “Wappalyzer chrome extension,” 2023,
https://chrome.google.com/webstore/detail/wappalyzer-technology-pro/
gppongmhjkpfnbhagpmjfkannfbllamg.

[8] GitHub, “wappalyzer/wappalyzer,” 2023, https://github.com/wappalyzer/
wappalyzer.

[9] J. Patra, P. N. Dixit, and M. Pradel, “Conflictjs: finding and understand-
ing conflicts between javascript libraries,” in Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 741–751.

[10] BuiltWith, “Websites using webpack,” 2023, https://trends.builtwith.
com/websitelist/Webpack.

[11] X. Liu, “The experiment data of ptdetector on github,” 2023, https:
//github.com/aaronxyliu/PTdetector-Data.

[12] SEMRUSH, “Semrush top websites ranking,” 2023, https://www.
semrush.com/website/top/global/all/.

[13] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,” in
Proceedings of the 8th Working Conference on Mining Software Repos-
itories, 2011, pp. 63–72.

[14] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying open-
source license violation and 1-day security risk at large scale,” in
Proceedings of the 2017 ACM SIGSAC Conference on computer and
communications security, 2017, pp. 2169–2185.

[15] W. Tang, D. Chen, and P. Luo, “Bcfinder: A lightweight and platform-
independent tool to find third-party components in binaries,” in 2018
25th Asia-Pacific Software Engineering Conference (APSEC). IEEE,
2018, pp. 288–297.

[16] Z. Yuan, M. Feng, F. Li, G. Ban, Y. Xiao, S. Wang, Q. Tang, H. Su,
C. Yu, J. Xu et al., “B2sfinder: Detecting open-source software reuse
in cots software,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2019, pp. 1038–1049.

[17] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, and
Y. Liu, “Automated third-party library detection for android applications:
Are we there yet?” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 919–930.

[18] C. Yang, Z. Xu, H. Chen, Y. Liu, X. Gong, and B. Liu, “Modx:
binary level partially imported third-party library detection via program
modularization and semantic matching,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 1393–
1405.

[19] A. Feldthaus and A. Møller, “Checking correctness of typescript in-
terfaces for javascript libraries,” in Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications, 2014, pp. 1–16.

[20] E. K. Kristensen and A. Møller, “Reasonably-most-general clients
for javascript library analysis,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 83–93.

[21] A. Møller, B. B. Nielsen, and M. T. Torp, “Detecting locations in
javascript programs affected by breaking library changes,” Proceedings
of the ACM on Programming Languages, vol. 4, no. OOPSLA, pp. 1–25,
2020.

[22] E. Wyss, L. De Carli, and D. Davidson, “What the fork? finding
hidden code clones in npm,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 2415–2426.

[23] K. Sun and S. Ryu, “Analysis of javascript programs: Challenges and
research trends,” ACM Computing Surveys (CSUR), vol. 50, no. 4, pp.
1–34, 2017.

[24] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged information
flow for javascript,” in Proceedings of the 30th ACM SIGPLAN confer-
ence on programming language design and implementation, 2009, pp.
50–62.

[25] S. Guarnieri and B. Livshits, “Gulfstream: Staged static analysis for
streaming javascript applications.” WebApps, vol. 10, pp. 6–6, 2010.

[26] C. Park, H. Lee, and S. Ryu, “All about the with statement in javascript:
Removing with statements in javascript applications,” ACM SIGPLAN
Notices, vol. 49, no. 2, pp. 73–84, 2013.

[27] C. S. Jensen, A. Møller, V. Raychev, D. Dimitrov, and M. Vechev,
“Stateless model checking of event-driven applications,” ACM SIGPLAN
Notices, vol. 50, no. 10, pp. 57–73, 2015.

[28] S. H. Jensen, M. Madsen, and A. Møller, “Modeling the html dom
and browser api in static analysis of javascript web applications,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, 2011, pp.
59–69.

[29] C. Park and S. Ryu, “Scalable and precise static analysis of javascript
applications via loop-sensitivity,” in 29th European Conference on
Object-Oriented Programming (ECOOP 2015). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

[30] S. Guarnieri and V. B. Livshits, “Gatekeeper: Mostly static enforcement
of security and reliability policies for javascript code.” in USENIX
Security Symposium, vol. 10, 2009, pp. 78–85.

[31] S. Just, A. Cleary, B. Shirley, and C. Hammer, “Information flow analysis
for javascript,” in Proceedings of the 1st ACM SIGPLAN international
workshop on Programming language and systems technologies for
internet clients, 2011, pp. 9–18.

[32] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Dynamic determinacy
analysis,” Acm Sigplan Notices, vol. 48, no. 6, pp. 165–174, 2013.

[33] S. Wei and B. G. Ryder, “Practical blended taint analysis for javascript,”
in Proceedings of the 2013 International Symposium on Software Testing
and Analysis, 2013, pp. 336–346.

[34] E. Andreasen and A. Møller, “Determinacy in static analysis for jquery,”
in Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, 2014, pp.
17–31.

[35] A. Mesbah and A. Van Deursen, “Invariant-based automatic testing of
ajax user interfaces,” in 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 2009, pp. 210–220.

659

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

[36] K. Pattabiraman and B. Zorn, “Dodom: Leveraging dom invariants for
web 2.0 application robustness testing,” in 2010 IEEE 21st International
Symposium on Software Reliability Engineering. IEEE, 2010, pp. 191–
200.

[37] M. Mirzaaghaei and A. Mesbah, “Dom-based test adequacy criteria for
web applications,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, 2014, pp. 71–81.

[38] A. M. Fard, A. Mesbah, and E. Wohlstadter, “Generating fixtures
for javascript unit testing (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2015,
pp. 190–200.

[39] A. Mesbah, E. Bozdag, and A. Van Deursen, “Crawling ajax by inferring
user interface state changes,” in 2008 eighth international conference on
web engineering. IEEE, 2008, pp. 122–134.

[40] A. Mesbah, A. Van Deursen, and S. Lenselink, “Crawling ajax-based
web applications through dynamic analysis of user interface state
changes,” ACM Transactions on the Web (TWEB), vol. 6, no. 1, pp.
1–30, 2012.

[41] M. Schur, A. Roth, and A. Zeller, “Mining behavior models from
enterprise web applications,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, 2013, pp. 422–432.

660

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:41:41 UTC from IEEE Xplore. Restrictions apply.

