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Abstract—Identifying the versions of libraries used by a
web page is an important task for sales intelligence, website
profiling, and even security analysis, enabling more fine-grained
web analysis. Recent work uses tree structure to represent the
property relationships of the library at runtime, leading to
more accurate library identification. However, current tree-based
detection methods cannot be directly used to detect specific
versions of libraries. This paper proposes a novel algorithm to
find the most unique structure out of each tree in a forest so
that the size of the trees can be greatly minimized. We show
that an implementation of our algorithm in a state-of-the-art
library detection tool, not only guarantees the soundness of
detection result but reduces associated costs where tree-based
detection methods can be used to detect library versions. Our
experiment results on over 500 real-world libraries with 30,000
unique versions show that our tool reduces space requirements by
up to 99% and achieves more precise version detection compared
with existing tools.

Index Terms—JavaScript Library, Dynamic Analysis, Version
Detection, Tree Algorithm

I. INTRODUCTION

With the increase in the variety of sophisticated web ap-
plications, the demand for front-end libraries continues to
grow. To illustrate this growth consider Cdnjs, the largest
CDN (Content Delivery Network) that serves websites. Cdnjs
now contains 6,056 different JavaScript libraries1, almost twice
as many as one year ago. With the staggering growth in
JavaScript front-end libraries, there is an equal need for auto-
matic library detection. JavaScript front-end library detectors
are frequently used for competitor analysis, sales intelligence,
security analysis, and website profiling.

Version detection is a crucial problem in library detection,
especially for security analysis. Current static analysis methods
for web applications require separate modeling of libraries[1].
Knowing the version of the library allows for more accurate
modeling, thus leading to more reliable static analysis results.
To illustrate the scope of the problem, a recent experiment
on 5,000 of the top websites discovered that 76.6% of them
include a vulnerability in a front-end library [2]. The vast
majority of these vulnerabilities were due to including an out-
of-date version of a common library. Library version detection

1Data source: https://cdnjs.com (Nov. 2023)

can efficiently and automatically identify front-end JavaScript
applications that use library versions with potential risks.

Although JavaScript library detectors exist, unfortunately,
there is no trivial way to determine the library version when
a library is detected. Even though some libraries store their
version as a string, allowing detectors to fetch and detect ver-
sions based on this runtime value, this type of labeling is not
comprehensive. In fact many libraries incorrectly label their
own versions or do not consistently label their libraries. There
is no standardized labeling format between different libraries.
Current library detectors rely on manually collecting version
label patterns for version detection. The most popular detector,
LDC, can recognize versions for only 123 libraries. The most
accurate detector, PTDETECTOR [3], uses tree structures to
automate library feature extraction but cannot easily detect
versions due to space requirements to store separate trees for
each version.

In this paper, we build on the idea of using tree structures
for library detection pioneered in PTDETECTOR and propose a
new tool PTV (Shortened for “PTdetector-Version”) to enable
tree-based version detection for JavaScript Libraries built on
top of PTDETECTOR. PTV can detect 556 libraries with
30,810 versions, and is anonymously and publicly available
here [4]. Our paper makes the following contributions:

1) a novel algorithm to minimize trees used in library
detection. Our idea is to extract the most unique structure
out of each tree in the forest, reducing the content being
saved and used for runtime detection. This algorithm is
not limited to the JavaScript library version detection
problem and can be applied to any similar tree-based
detection task.

2) an implementation of our algorithm in PTV to minimize
every tree without affecting the detection ability of tree-
based library detectors. The tool is published on Google
Web Store [5].

3) a comprehensive evaluation of the version detection abil-
ity of PTV against existing library detection methods on
over 500 real-world libraries with over 30,000 versions.
Our results show that PTV reduces the memory footprint
by 99.32% without affecting the detection accuracy. In
addition, the detection results given by PTV guarantee
soundness and are more precise than existing methods.
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The correctness of the algorithm is proved and the time
complexity is analyzed in the technical report submitted in
supplementary material.

II. BACKGROUND AND MOTIVATION

A. Front-end JavaScript Library

JavaScript libraries are commonly designed to adapt to
different runtime environments. The APIs of the library are
composed of functions wrapped in objects. These objects
are registered in the global context of the browser runtime,
allowing the APIs to be globally available. Listing. 1 shows
simplified code from a popular library Lodash2 as an example
to present the details of this process.

1 (function() {
2 function lodash(value) {
3 return new LodashWrapper(value);
4 }
5 // Define properties
6 lodash.chain = function(value) {
7 var result = lodash(value);
8 result.__wrapped__ = value;
9 return result;

10 }
11 lodash.VERSION = ’4.9.0’;
12 ...
13 // Export lodash
14 window._ = lodash;
15 }.call(this));

Listing 1. Simplified Lodash Browser Initialization Steps.

Listing. 1 presents a few key steps of the Lodash initial-
ization in the browser. Line 1 defines an anonymous func-
tion to wrap all the code, and line 2 defines the function
lodash(value), which will return an initialized object.
Note that a function is also an object in JavaScript. Then in
line 6 - line 12, various APIs (chain, VERSION, and others)
are registered as lodash object properties. Finally, in line
14, the lodash object is exposed to the identifier _ in the
global context, i.e., registered as a property of window3.

B. Detection Methods

There are many web JavaScript library detectors on the
market. Most of them act as browser extensions that detect
loaded libraries by checking specific properties at runtime.
In Sec. II-B1 we use the most popular open-source detector,
Library-Detector-for-Chrome (LDC), to illustrate their detec-
tion mechanism on libraries and versions, as well as their
drawbacks. In response to the problems of these traditional
detectors, PTDETECTOR is proposed in [3]. This tool makes
use of the runtime property tree structure to enable automated
feature extraction and more accurate library detection, which
is discussed in Sec. II-B2.

1) Library-Detector-for-Chrome (LDC): LDC is the most
popular (based on GitHub star rating) open-source JavaScript
library detector. It was created in January 2010 and is still
being updated today. It has 600+ stars on GitHub [6] and
10,000+ users on the Chrome Extension Store [7]. As a

2A modern JavaScript utility library delivering modularity and performance.
3Code running in a web page share single global object window.

Fig. 1. pTree illustration of Lodash.

browser extension, LDC uses dynamic methods to detect
libraries. Listing. 2 is a simplified JavaScript snippet of the
LDC source code used to detect Lodash.

1 function testLodash () {
2 var _ = window._,
3 wrapper = _.chain(1);
4 if ( _ && wrapper.__wrapped__) {
5 return { version: _.VERSION || UNKNOWN

};
6 }
7 return false;
8 }

Listing 2. LDC detects libraries by examining properties during the browser
runtime.

Listing. 2 examines two JavaScript properties: _ and
_.chain, in the global context. If both of them exist, Lodash
is assumed to be present, and the version is determined by
the value in property _.VERSION. We call such property
containing version information as the version label. Most
detectors on the market today use similar detection methods.
Such approach is straightforward and easy to implement, but
has a number of drawbacks shown in prior work [3]. First,
confirming the existence of a library by a few properties
may lead to false positives due to the commonness of global
property conflicts in JavaScript. Second, such method can not
handle libraries wrapped by web bundlers, such as Webpack.

Unfortunately, identifying library versions by reading the
version labels is not always reliable. The location and the pat-
tern of the version label varies between libraries, even between
versions in a single library. With the growing number of web
libraries and versions, manually finding accurate version label
patterns is infeasible. Over six thousand libraries are registered
on Cdnjs, but LDC can support version detection for only
123 libraries. In addition, as we will show in our experiments
(Sec. V-D), not all JavaScript libraries are labeled with correct
version information. Indeed, only half of the libraries in our
dataset have comprehensive labeling for their versions, and
half of the libraries that contain version labels have incorrect
labels!

2) PTdetector: PTDETECTOR [3] introduces a new concept
named pTree, which refers to a tree formed by the property
relationship between JavaScript variables in a runtime frame.
Each vertex in a pTree is assigned with the variable’s name,
type, and value. Every pTree is rooted at the global variable
window. Fig. 1 shows a pTree generated from the Listing. 1.

PTDETECTOR takes a JavaScript file and its dependency
information as input and automatically extracts the runtime
pTree as the detection feature using a trivial localhost client,
and uses a weight-based tree-matching algorithm to score
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the existence of libraries on a web page. The rich details
provided by the tree structure allow PTDETECTOR to distin-
guish libraries more accurately and detect libraries wrapped by
packers. This approach has several advantages over traditional
methods, however, it does not support version detection.

C. Our Solution: pTree-based Version Detection

A naive, straightforward approach to enable pTree-based
version detection is to generate a pTree for every version of
every library. Following this idea, at browser runtime, we
first use the pTree of the latest version of the library to
determine if the library is loaded on the web page, as is done
in PTDETECTOR. After confirming the loaded library name
and loaded location in the browser pTree, we then conduct
tree matching against the pTrees of all versions of this library
to determine which version has the best match. We discuss the
challenges to this solution in the subsections below.

1) Correctness: Suppose that Lodash only has three ver-
sions – A, B, and C. Fig. 2 shows the pTrees for these
versions. Consider if all vertices and edges of the pTree
representing library version A are detected at runtime, can
we conclude that the loaded version is A? Counter-intuitively,
the answer is no. Consider that all vertices and edges in the
pTree of version A also exist in the pTree of version C. Thus,
we cannot tell if the loaded version of Lodash is C or A.
We call the pTree of version C a supertree4 of the pTree of
version A. This situation is rather common in library version
detection due to the high similarity in structures between
library versions. One pTree may have multiple supertrees. In
Sec. III-B, we will reason about supertrees and introduce an
algorithm to correctly identify version.

Fig. 2. Example of pTrees of different versions of Lodash. The type and
value of each vertex are omitted in the figure. Assume that any vertices with
the same name have the same type and value as well.

2) Memory Footprint: Today, there are 2,509,859 library
versions on Cdnjs. According to the memory overhead esti-
mation in the PTDETECTOR paper, if we set the pTree size
limit as 50, then over 8G space is needed to store all pTrees.
Unfortunately, even a pTree with maximum 50 vertices is
not enough to distinguish the subtle differences between the
versions.

Our insight is to extract the most unique structure out of
each pTree, reducing the content being saved and used for
runtime detection. For example, in Fig. 2, we can observe
that the property window._.chain appears in all versions,
so this property does not serve any distinguishing purpose in
version detection, and should be discarded. In contrast, the

4Similar to a superset. The formal definition of supertree will be given in
Sec. III-A

property window._.paste only appears in version B and
the property window._.read only appears in version C.
Such property can completely substitute the functionality of
the original pTree, being able to uniquely characterize the
version. In other words, if the property window._.paste is
detected during the runtime, we have confidence that the full
pTree of version B can be detected. We call such structure
as unique subtree. Following this intuition, we are able to
design a method to minimize every pTree without affecting the
detection ability. In Sec. III-C, we will present the algorithm
to find the unique subtree of each tree.

III. ALGORITHM DESIGN

In this section, we describe the core algorithms needed for
JavaScript library version detection. Sec. III-A gives basic
definitions. Sec. III-B and Sec. III-C provide the solutions to
the two challenges introduced in Sec. II-C respectively. A short
complexity analysis is given in Sec. III-D. The complete proofs
of correctness and complexity analysis of the algorithms are
not presented here due to space constraints. We provide them
in a technical report for interested readers in the submission
supplementary material.

A. Basic Definition

1) Labeled Tree: We denote a labeled tree as T =
(V,E,Σ, L), consisting of a vertex set V , an edge set E,
an alphabet Σ for vertex labels, and a labeling function
L : V → Σ. The size of T is the number of vertices in the
tree.

A path is a sequence of vertices p = (v1, v2, ..., vn) ∈ V n

such that vi is adjacent to vi+1 for 1 ≤ i < n. When the
path’s first vertex is root and the last vertex is a leaf, we call
it a full path. For a tree T , we use T.P to represent the set of
all paths in T , and T.Pf to represent the set of all full paths
in T .

2) Induced Subtree: For a tree T with vertex set V and
edge set E, we say that a tree T ′ with vertex set V ′ and edge
set E′ is an induced subtree of T , denoted as T ′ ⪯ T , if and
only if (1) V ′ ⊆ V , (2) E′ ⊆ E, (3) The labeling of V ′ is
preserved in T ′. If T ′ ⪯ T , we also say that T is a supertree
of T ′. Intuitively, an induced subtree T ′ can be obtained by
repeatedly removing leaf vertices in T , or possibly the root
vertex if it has only one child. For simplicity, all occurrences
of “subtree” in the latter text refer to the induced subtree.

We say two trees T1 and T2 are isomorphic to each other,
denoted as T1 = T2, if there is a one-to-one mapping from
the vertices of T1 to the vertices of T2 that preserves vertex
labels and adjacency. Based on the definition, it is easy to see
that relation ⪯ is antisymmetric and transitive, i.e., T1 ⪯ T2

and T2 ⪯ T1 implies T1 = T2; T1 ⪯ T2 and T2 ⪯ T3 implies
T1 ⪯ T3. We use symbol T1 ≺ T2 when T1 ⪯ T2 but T1 ̸= T2.

B. Supertree Exclusion

For a library with n versions, we use the label tree set Γ =
{T1, T2, ..., Tn} to represent pTrees for each version. The label
tree is used because each vertex in the pTree will carry extra
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information – name, value, and type – which are represented
as labels mapping to vertices.

For a given library loaded at runtime we have a pTree
represented by the label tree ϕ. A simple strategy to determine
the version of a loaded library is to iterate through trees in Γ
and check whether they are subtrees of ϕ. If a given tree is not
a subtree, meaning that the web page runtime does not contain
the complete pTree information of this library version, then the
version corresponding to this tree is not the correct one.

If we find one tree in Γ that is a subtree of ϕ, however, we
still can not immediately conclude the version. Assume tree T
is a subtree of ϕ, then according to the transitivity of relation
⪯, all trees in Γ that are subtrees of T are also subtrees of
ϕ. In real-world libraries, the relation ⪯ between pTrees from
different versions is frequent. This occurs because the action
of adding variables and methods in a JavaScript program when
updating the version is reflected in the pTree by adding vertices
to the original tree. Thus, the old pTree is a subtree of the new
one. As a result, when we find one tree is a subtree of ϕ, it
is essential to further make sure all the supertrees of this tree
are not subtrees of ϕ. Based on this observation, we construct
the version detection algorithm shown in Algo. 1.

Before diving into the algorithm, two new definitions need
to be introduced to help in its formalization. First, we use
the symbol S(T ) to represent the set of all supertrees of T
contained in Γ, named supertree set. In other words, S(T ) =
{T ′ ∈ Γ | T ⪯ T ′}. Second, we define the equivalence class
of a tree T with respect to Γ as the set of all trees in Γ that is
isomorphic to T , denoted as [T ], where [T ] = {T ′ ∈ Γ | T ′ =
T}. Both supertree set and equivalence class can be calculated
through trivial tree comparison. Fig. 3 is an example of these
two definitions.

Fig. 3. Assume Γ consists of six trees in the plot, we have the T1’s supertree
set S(T1) = {T1, T2, T3, T6}, and equivalence class [T1] = {T1, T3}.

Algo. 1 shows the algorithm to determine the library version
during web page runtime. The inputs are labeled trees set
Γ, web runtime pTree ϕ, together with supertree set and
equivalence class for each tree in Γ. The algorithm iterates
through pTrees in Γ to check whether one of them is a subtree
of ϕ (line 2). If so, then check whether all supertrees of this
pTree are not subtrees of ϕ (lines 3-7). If so again, return the
equivalence class of this tree as the algorithm output (line 8).
Here algorithm returns [T ] instead of a single tree T because
the pTree-based detection algorithm is not able to distinguish
between versions whose pTree are equivalent.

C. Unique Subtree Mining

1) Goal: Although we have given a deterministic algorithm
to find the base tree, in our practical application scenarios,

Algorithm 1 Determine Library Version
Input: library version pTrees set Γ, web runtime pTree ϕ,

S(T ) and [T ] for each tree T ∈ Γ
Output: possible pTrees loaded in ϕ

1: for each T ∈ Γ do
2: if T ⪯ ϕ then
3: for each T ′ ∈ S(T ) do
4: if T ′ ⪯ ϕ then
5: go to 9
6: end if
7: end for
8: return [T ]
9: end if

10: end for

the library version pTrees (trees in Γ) are usually large and
numerous. If the algorithm in the previous section is used for
runtime detection, the time and space costs are unaffordable.
As a result, in this section, we propose an algorithm to
minimize the size of trees in Γ by unique subtree mining
and ensure that the previous algorithm is still valid. Formally
put, given Γ = {T1, T2, ..., Tn}, we define its minimized label
trees set Γm = {M1,M2, ...,Mn}, where M1 ⪯ T1,M2 ⪯
T2, · · · ,Mn ⪯ Tn. Our goal is to find a minimum5 Γm that
satisfies replacing Γ with this new Γm in the input to Algo. 1
will not change the algorithm output, i.e., Algorithm1(Γ, ϕ) =
Algorithm1(Γm, ϕ).

2) Observations: For a tree T ∈ Γ, suppose t is a subtree
of T (t is not required to be contained in Γ), we say t is an
unique subtree of T if it is not a subtree of other trees in Γ,
i.e., ∀ T ′ ∈ Γ − {T}, t ⪯̸ T ′. Consider that t only appears
in the structure of T , so the existence of t during the version
detection process indicates the existence of T . As a result,
our strategy is to calculate the minimum unique subtree for
each tree in Γ, and use these unique subtrees to constitute
the new label trees set Γm. In other words, for a tree Ti in
Γ, we choose its minimum unique subtree as Mi in Γm. The
uniqueness property of these subtrees ensures the detection
algorithm output is unchanged. However, it is easy to induce
that for any tree T which has a supertree other than itself,
it does not exist unique subtree, because any subtree of T is
also a subtree of T ’s supertrees. As a result, in all subsequent
discussions of unique subtree, supertrees are excluded. It is
safe to do so because supertrees are also excluded in Algo. 1.

To find the unique subtree, we define the mapping Rec :
p → P(Γ) to record the occurrences of paths in other trees.
Concretely speaking, for a path p of tree T ∈ Γ, Rec(p) maps
to the set of all trees in Γ−S(T ) which contain the same path
p. Namely, Rec(p) = {T ′ ∈ Γ−S(T ) |p ∈ T ′.P}. In addition,
we use the symbol R(T ) to represent the collection of Rec
values of all full paths in tree T . In other words, R(T ) =
{Rec(p) | p ∈ T.Pf}. Notice that R(T ) is a multiset because

5The word “minimum” here means the number of all vertices in Γm is
minimum.
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different paths in a tree may have the same Rec value.
Take the tree T1 in Fig. 3 as an example to illustrate

the definition of Rec and R. The tree T1 has the following
three full paths – (1,2,3), (1,2,4), and (1,2,5). For each full
path, we check its occurrences in Γ − S(T1) = {T4, T5}.
Observed that the path (1,2,3) only appears in T4, we can
get Rec((1, 2, 3)) = {T4}. Similarly, Rec((1, 2, 4)) = {T4}
and Rec((1, 2, 5)) = {T5}. Finally, we have R(T1) =
{{T4}, {T4}, {T5}}.

Now we give a key proposition about the Rec collection R.
Proposition III-C.1: For any tree T ∈ Γ, ∩R(T ) = ∅.
PROOF. Suppose ∩R(T ) is not an empty set, then there is

at least one tree T ′ in Γ satisfying T ′ ∈ ∩R(T ), which means
that all the full paths of T also occur in T ′. Hence, T ′ is a
supertree of T , i.e., T ′ ∈ S(T ). This is contradictory to the
definition of Rec, where we exclude the path recording in
S(T ). So ∩R(T ) = ∅. □

Prop. III-C.1 shows that the full paths in tree T will not
appear together in any single tree contained in Γ − S(T ). In
other words, T is a unique subtree of itself. To take it a step
further, if we can find a subset C ⊆ R(T ) which still holds
∩C = ∅, then the tree constructed from the paths in C is a
unique subtree of T . Taking the T1 in Fig. 3 as an example,
C = {{T4}, {T5}} is the smallest subset of R(T1) that satisfies
∩C = ∅. Then we can construct the minimum unique subtree
of T1 by combining a path with Rec value of {T4} and a
path with Rec value of {T5}. As shown in Fig. 4, the first
subtree of T1 is the combination of path (1, 2, 3) and (1, 2,
4); the second one is the combination of path (1, 2, 3) and (1,
2, 5). Both of them are unique – not subtrees of any tree in
Γ− S(T1) = {T4, T5}.

Fig. 4. Tree T1 in Fig. 3 has two minimum unique subtrees.

Finding the smallest subset C whose intersection is empty
is equivalent to a well-known NP-complete problem – the set
cover problem – which is described as follows:

Given a set of elements {1, 2, . . . , n} (called the
universe) and a collection S of m sets whose union
equals the universe, the set cover problem is to iden-
tify the smallest sub-collection of S whose union
equals the universe.

The set cover problem can be solved within approximate
polynomial time by a famous greedy algorithm shown in
Algo. 2. At each stage, it chooses the set with the largest
number of uncovered elements. This algorithm achieves an
approximation ratio of H(s), where s is the size of the set to
be covered. In other words, it finds a set covering that may be
H(n) times as large as the minimum one, where H(n) is the
n-th harmonic number:

H(n) =

n∑
k=1

1

k
≤ lnn+ 1 (1)

Algorithm 2 MinCoverSet
Input: a set collection: S = {ω1, ω2, ..., ωn}, where ωi ⊆ Γ
Output: a set I ⊆ {1, 2, ..., n}, such that

⋃
i∈I ωi = ∪S

1: Initialization: I ← ∅, C ← ∅
2: while C ̸= U do
3: Find the i ∈ {1, 2, ..., n}−I , such that |C∪ωi| is largest
4: I ← I ∪ {i}
5: C ← C ∪ ωi

6: end while

3) The algorithm: In the previous section, we introduce
three new concepts: unique subtree, path record mapping Rec,
and record collection R. We elaborate their relationship and
then provide a greedy algorithm to calculate an approximated
smallest subset C of R to satisfy ∩C = ∅, which can help us
generate a minimum unique subtree. This section formalizes
our observations into the unique subtree mining algorithm
shown in Algo. 3.

Algorithm 3 Unique Subtree Mining
Input: the labeled trees set Γ = {T1, T2, ..., Tn}
Output: the minimized set Γm = {M1,M2, ...,Mn}

1: Initialization: Γm ← ∅
2: for each Ti ∈ Γ do
3: calculate R(Ti)
4: I ←MinCoverSet ({Γ− r | r ∈ R(Ti)})
5: Mi ← BuildTreeFromPath (Ti, I)
6: Γm ← Γm ∪ {Mi}
7: end for

For each tree in Γ, Algo. 3 first calculates its path record
collection R. Then in line 4, Algo. 2 is invoked. Notice
that the function input is set R with each element taking
the complement, so that, by De Morgan’s laws, finding the
smallest subset C of R converts to the set cover problem. The
function returns an index set I . In line 5, the unique subtree
Mi is built based on the index set I , and is then appended to
the set Γm in line 6.

Algo. 4 shows the detail of unique subtree construction.
The input to the algorithm is a tree T and an index set I . We
select the full path whose index appears in the index set I to
construct the tree.

Algorithm 4 BuildTreeFromPath
Input: a tree T with a full path set T.Pf = {p1, p2, ..., pk},

an index set I ⊆ {1, 2, ..., k}
Output: the unique subtree M

1: Initialization: M ← ∅
2: for each i ∈ I do
3: Add path pi to the tree M
4: end for

If we take trees in Fig. 3 as the input to Algo. 3, the output
will be Γm constituted by unique subtrees displayed in Fig. 5.
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Fig. 5. The minimized label tree set Γm, consisting of minimum unique
subtrees of trees in Fig. 3.

D. Algorithm Time Complexity

For the unique subtree mining stage, calculating the path
record collection R has the highest complexity. In this step
(Algo. 3 line 3), the algorithm needs to check the existence of
every full path in all other trees in Γ, so the time complexity
is O(n · N2), where n represents the number of trees in Γ,
and N represents the number of vertices in Γ.

When the isomorphism exists between pTrees in large num-
bers, prioritizing the computation of equivalence classes can
effectively decrease time spent on calculating the path record
collection R. Prior work [8] shows that at most n2/m + n
equality comparisons are sufficient to find all equivalence
classes for n elements, where m is the largest size among all
equivalence classes. Using their algorithm, we can shrink the
value of n and N in the complexity of path record calculating,
and the correctness of the algorithm will not be affected.

The time complexity to determine the library version
(Algo. 1) using minimized tree set Γm is O(n) because each
tree in Γm needs to be compared with ϕ at most once. In other
words, n times subtree relationship examines is enough to get
the algorithm output.

IV. IMPLEMENTATION

We implement our algorithm into a Chrome extension
named PTV and published on Google Web Store [5]. Fig. 6
shows the overall workflow of PTV library feature generation
and web runtime library version detection. PTV is built on
top of PTDETECTOR.

A. Feature Generation Stage

Feature generation stage is completed offline using a trivial
local web server. For a library with n versions, first, we load
every version of the library file in an empty web page, and use
PTDETECTOR to generate the pTree for each library version,
represented as Γ = {T1, T2, ..., Tn}.

Inner dependency and outer dependency of each version
are required as input to PTDETECTOR to eliminate the depen-
dency impact 6. Outer dependencies can be easily fetched on
libraries’ official sites, while inner dependencies can only be
inferred by reading library raw code, which is time-consuming.
However, for version detection usage, inner dependencies will
not only have no impact on the accuracy of the detection, but
will also provide more information to allow us to differentiate
versions. So, for each version of a library, we only provide

6More discussion about inner dependency and outer dependency can be
found in [3] Sec.III.C.(1).

its outer dependency information. In addition, we made some
modifications to the pTree generation process. In the pTree
generated by PTDETECTOR, the vertex of the “array/set/map”
type is stored with the number of elements as the value to avoid
large trees. Since this strategy does not consider the actual
elements of the data structure it represents it does not provide
effective differentiation on such types of vertices. To account
for the values stored in such data structures in the pTree, we
modify PTDETECTOR to use the MD5 checksum value of
JSON stringified “array/set/map” variable as the vertex value.

Then we use the unique subtree mining algorithm (Algo. 3)
to generate the minimized pTrees set Γm and save it in a local
file for PTV runtime version detection. The original pTree of
the library’s latest version will be stored for PTDETECTOR
library detection.

B. Detection Stage

The detection part of PTDETECTOR is implemented as a
Chrome extension that identifies libraries in the browser at
runtime. We modify its workflow to enable version detection
in PTV as given in the right part of Fig. 6. For a target web
page, PTDETECTOR will make use of libraries’ latest version
pTrees to identify loaded libraries and their root locations X
in the browser runtime pTree. Then we apply Algo. 1 using
minimized pTrees set Γm as input to identify the specific
library version. Another input ϕ to Algo. 1 is the pTree rooted
at X . The detected version information will be displayed in
the PTV extension popup menu.

V. EVALUATION

In this section, we evaluate the detection ability and perfor-
mance of PTV by answering three research questions.

A. Experiment Setup

All the experiments are conducted on macOS Sonoma (V
14.1.1) with an Apple M1 chip and 8G memory. All the web
pages are opened on Chrome 118.0.5993.88 (Official Build)
(arm64). This configuration is close to how everyday users use
the browser and will represent realistic numbers for our tool
”in the wild”.

B. RQ1: How effective is the minimization of PTV?

To set up an experimental dataset we crawled Cdnjs to
gather 700 libraries with the highest GitHub star number. From
the top 700 libraries we removed those are not designed to
run on the web front-end and those which cannot be loaded
successfully due to unknown missing dependencies. We also
exclude four frameworks – React, Vue, Next.js, and Preact.
As explained in the PTDETECTOR [3], the code for these
frameworks mounted on CDN is their runtime debugging tool
and we do not consider them in our experiments.

After the exclusions, our dataset consists of 556 libraries
with 30,810 versions. We load each on our local server and
generate a pTree for each version setting the depth limit as
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Fig. 6. PTV library version feature generation and runtime detection workflow.

four and the size limit as 1000 7. Our result shows that
the average size of generated pTrees is 323 so the limit of
1000 is reasonable. After applying the PTV unique subtree
mining algorithm, we generate minimized pTrees for every
library, with the average size of the pTree being 3.4. Our
algorithm reduces the total size of required pTrees for all
556 libraries from 10,654,002 to 72,950. Thus, we are able to
reduce the memory footprint by 99.32%. On average, 8 Bytes
are required to store one pTree vertex in zipped JSON format.
With minimization, to store all pTrees needed for version
detection for all libraries currently on Cdnjs, you would need
2, 509, 859 × 3.4 × 8B = 65.45MB of space. The detection
accuracy is not affected by this reduction as will be shown in
subsequent RQs.

Table I shows the time overhead breakdown of each al-
gorithm stage during PTV minimization. In total, generating
minimized pTrees for 556 libraries takes 1886.7 seconds
(about half an hour), and a single library takes 3.4 seconds on
average. Calculating the path record takes up the vast majority
of the time (95.0%), and the equivalence class calculation stage
takes only 4.9% of the time.

TABLE I
TIME OVERHEAD TO GENERATE FEATURE INFORMATION FOR 556

LIBRARIES.
Equivalence class Path Record Other Total

Refer [8]
Theorem 1

Algo. 3
line 3 - -

Time 93.2 s 1791.0 s 2.5 s 1886.7 s
avg. Time 0.2 s 3.2 s 4.5 ms 3.4 s
Percentage 4.9% 95.0% 0.1% 100%

RQ1 Conclusion: PTV greatly reduces the size of
the needed pTrees for version detection (99.32%), thus
making pTree-based version detection possible. 65 MB is
sufficient for all libraries on Cdnjs and the time overhead
of PTV minimization workflow is acceptable.

7It is not hard to infer that when every pTree of one library is trimmed
based on the same depth limit, all the properties of the minimization still hold.
However, this is not true for the size limit trimming. In practice, we need a
size limit to avoid extreme cases.

C. RQ2: How does PTV perform in the wild?

To answer this question, we test PTV on the 80 top
visited websites dataset proposed in the PTDETECTOR paper
[3], and compare its detection results with the most popular
open-source tool Library-Detector-for-Chrome (LDC) and one
of the best commercial tools Wappalyzer8. Wappalyzer has
2,000,000+ users on the Chrome web store. Both LDC and
Wappalyzer are hard to automate for testing, so we have
to manually open the web pages and record the detection
results. To properly measure their version detection ability,
some definitions should be introduced in advance.

1) Definitions of measurement: When a library is detected
on a web page, detectors will give out a range of versions
as the detection result. We use the symbol D to represent the
set of all versions suggested by a detection result (note one
detection represents one library). Every element in D may be
the true version of this library. Suppose D1 and D2 represent
the detection result sets of two different tools applied on the
same library, depending on the relationship between D1 and
D2, we specify five relationships shown in Table II to compare
the detection ability of the two tools for this library.

TABLE II
FIVE DIFFERENT DETECTION ABILITY RELATIONSHIPS. (D1,D2 ̸= ∅)
Relationship between D1 and D2 Statement

D1 = D2 D1 and D2 are consistent
D1 ⊂ D2 D1 is more precise than D2

D1 ⊃ D2 D1 is less precise than D2

D1 ∩ D2 = ∅ D1 and D2 are inconsistent
otherwise D1 and D2 are partly consistent

We expect that the detection results should be as precise
as possible. In the best case, there is only one element in the
result set – the correct version value. Sometimes the detection
results of different tools are inconsistent or partly consistent
if the symmetric difference of result sets is not empty. In such
cases, we can not directly compare which tool performs better.

For users, the detection results are normally not shown
in the set format, and we need to induce D based on the
result description displayed by the tool. To illustrate, suppose
there are five versions of core-js in our experiment dataset
– “2.7.0”, “2.8.0”, “2.9.0”, “3.0.0”, and “3.1.0” – which are

8https://www.wappalyzer.com/
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loaded separately into five empty web pages. Then we apply
a tool marked A to detect the version of core-js on each web
page and collect the detection result. Here, we use DA to
represent the result set of tool A, and DG to represent the
ground truth set. Table III demonstrates the value of DA under
different result descriptions.

TABLE III
AN EXAMPLE TO SHOW HOW TO INDUCE DA BASED ON THE DETECTION

RESULT DESCRIPTIONS.
DG Result description of A DA

{2.7.0} library not detected ∅
{2.8.0} unknown version {2.7.0, 2.8.0, 2.9.0, 3.0.0, 3.1.0}
{2.9.0} 2.9.0 {2.9.0}
{3.0.0} ≥ 3.0.0 {3.0.0, 3.1.0}
{3.1.0} < 3.0.0 {2.7.0, 2.8.0, 2.9.0}

As shown in Table III, when the library fails to be detected,
DA is ∅; when the detection result is “unknown” for the
version but the library is correctly identified, DA is the set of
all versions, i.e., all versions may be true; other cases follow
naturally. Based on the statements in Table II, we can describe
the detection ability of A on core-js as: A fails to detect core-js
on “2.7.0”; A is less precise than the ground truth on “2.8.0”
and “3.0.0”; A is consistent with the ground truth on “2.9.0”;
A is inconsistent with the ground truth on “3.1.0”.

In some cases, detectors do not provide a result consistent
with the ground truth. It is satisfactory enough if the true
version is contained in the detection result set, and we call such
detection sound. Formally put, for one detection on version
v, D is sound if v ∈ D. Based on this definition, if several
tools have inconsistent results in one detection, then at most
one of them is sound.

2) Experiment Results: We extend PTDETECTOR to be able
to detect 556 libraries (the same used in RQ1) – this system is
equivalent to PTV with version detection turned off. Table IV
presents the number of detectable libraries, unique detected
libraries, and unique detected library occurrences across four
tools on the top 80 web pages. We can see that the original
PTDETECTOR, which has the feature information of only 83
libraries, shows a similar library detection ability compared
with LDC and Wappalyzer. But our extended PTDETECTOR
detects 79 different libraries with 413 unique occurrences,
almost twice the number of other tools. Furthermore, all the
unique library occurrences detected by other tools are also
detected by our tool. The occurrence breakdown of each
library detected by our tool is shown in Fig. 7.

TABLE IV
NUMBERS OF LIBRARIES DETECTED BY DIFFERENT TOOLS ON THE TOP 80

WEB PAGES.

LDC Wappalyzer PTDETECTOR
extended

PTDETECTOR
Detectable Libraries 123 unknown 83 556

Detected Libraries 32 35 36 79
Library Occurrences 238 237 289 413

Now we compare the version detection capabilities of
existing tools to PTV. Based on the version result descriptions

Fig. 7. Library occurrences number detected by extended PTDETECTOR.

given by different tools, for each library occurrence in our
experiment, we introduce the version set D following the
definitions in Table III. We then compare the version detection
result of PTV against LDC and Wappalyzer respectively (note
that we do not compare to PTDETECTOR, as even the extended
PTDETECTOR cannot detect versions). We count the number
of each relationship category proposed in Table II and show
the results in the following table (Table V). We do not consider
libraries that failed to be identified by LDC or by Wappalyzer
for an apples-to-apples comparison.

TABLE V
VERSION DETECTION COMPARISON BETWEEN PTV AND LDC /

WAPPALYZER ON THE TOP 80 WEB PAGES.

PTV Frequency
versus LDC versus Wappalyzer

consistent 228 (95.8%) 192 (81%)
less precise 1 (0.4%) 1 (0.4%)

more precise 3 (1.3%) 31 (13.0%)
inconsistent 6 (2.5%) 13 (5.5%)

partly consistent 0 0
sum 238 237

Table V shows that most version detection results are consis-
tent between all three tools. PTV gives more precise results on
3 occurrences compared to LDC, and on 31 occurrences com-
pared to Wappalyzer. Wappalyzer, despite being a commercial
tool, has the lowest precision among the three tools. There
is only one occurrence where PTV is less precise providing
a range of versions instead of a single version – the library
“mustache.js” loaded on the web page www.dailymail.co.uk.
Library “mustache.js” uses a string variable to store the
version information, on which LDC and Wappalyzer based
their version detection. Through manual inspection of the
library source file, we find that the loaded version is 0.8.2.
the library developer forgot to change the value in the version
string variable, leaving it as 0.8.1. Although more precise,
reporting a single version, LDC and Wappalyzer, nevertheless
give an incorrect result identifying the version as 0.8.1. PTV
provides a less precise result, giving a range instead of a
distinct version: DPTV = {0.8.1, 0.8.2}. The pTrees of these
two versions are identical and therefore indistinguishable using
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pTree-based algorithm. However, this result is still sound,
since the range does include the correct library version.

For the 19 inconsistencies between the tools, we manu-
ally verified the version of the library. Verification included
checking HTML information, comparing web page JavaScript
code, browsing the development blogs of the websites, and
investigating the source code of detectors. We conclude that
for all inconsistent occurrences, PTV produced sound results.
We will reason about why this is the case in RQ3.

Lastly, we examine the runtime overhead of all the tools. For
every web page, we record the time starting from clicking the
tool button until detection results are displayed. For each tool,
we repeat the recording three times and take the average as the
overhead value to mitigate the impact of network fluctuations.
Fig. 8 uses box plots to depict the overhead distributions of
four tools.

Fig. 8. Runtime overhead distribution of different tools on 80 web pages.

We can observe that Wappalyzer has the fastest response
time despite showing the poorest version detection ability.
Then comes the original PTDETECTOR, whose response time
mostly ranges from 0.95 to 1.75 seconds. The third one is
LDC, with a slightly higher response time than PTDETECTOR.
Our tool PTV is based on the extended PTDETECTOR, having
the highest response time because the number of libraries it
integrates is much larger than other tools (556 compared to
∼100). For most of the web pages, our tool can complete
detection within five seconds, which is acceptable for average
users. In addition, our tool provides an option for users to
control the number of libraries they wish to add to the scanning
queue, so users can tailor the response time to fit their use
cases.

RQ2 Conclusion: Our extended PTDETECTOR can de-
tect far more libraries on web pages. The version detec-
tion ability of PTV is consistent with existing tools in
a large portion; and is more precise or sound in a small
portion.

Besides, although our tool has the highest response
time, which is the expense of more detectable libraries,
the overall overhead is still within a reasonable range.

D. RQ3: Is PTV version detection sound?

1) Minimized pTree Pattern: After manually analyzing
minimized pTrees produced from our dataset, we observe that
it is a common practice for web library developers to store
the version information in a specific property. For example,
all jQuery versions store the version as a string value in the
“window.jq.fn.jquery” property. Library detectors can
determine the existence and version of jQuery by checking
the value of this property. We call such property containing
version-related information as the version label, and the library
version with a version label as explicit-labeled.

For the explicit-labeled library version, the generated min-
imized pTree will normally be the exact path of this property
containing version information, because the version value is
unique among versions. Sometimes such a property will be
given a different name, such as “release” or “build”, and
their locations vary from library to library. But it is easy to
find such version storage patterns using our tool. Among 556
libraries, we found 98 that have all versions explicit-labeled,
205 that have part of versions explicit-labeled, and the rest
have no labeled version. We observed that many libraries don’t
contain version information in the initial versions, but add it
when more versions are developed.

2) Soundness: Determining whether the library detectors
are capable of producing correct version detection results is
crucial. To test this, we set up an empty local web page to
load each version of each library in the dataset sequentially
and record the detection results of PTV, LDC, and Wappalyzer
on the web page. Controlling which version is loaded allows
us to establish ground truth. If the detection result does not
contain the correct loaded version, we mark this detection as
unsound. We only consider libraries that can be identified by
all three tools – 64 libraries satisfy this requirement. These 64
libraries have 3,533 versions.

The results show that 151 versions are incorrectly identified
by LDC; 190 by Wappalyzer; while PTV correctly identifies
all 3,533 versions. This is not surprising as PTV guarantees
soundness at the algorithm level, i.e., the correct version must
be contained in the result. Wappalyzer has more unsound
detection than LDC due to uncertain technical defects 9.
For LDC, we find that all incorrect results come from mis-
labeling. As the last research question showed, sometimes
library developers forget to update the version property in a
newer version. We call such an explicit-labeled version that
is assigned with an incorrect version label as a mislabeled
version. PTV is effective in finding mislabeling. Among the
total 2,710 explicit-labeled library versions in the 64 libraries,
151 (5.6%) of them are mislabeled, coming from 23 different
libraries. Fig. 9 displays the number of mislabeled versions.

In Fig. 9, most libraries have less than ten mislabeled
versions, while libraries “YUI 3” and “FlotCharts” have rather
high amounts of mislabeled versions – 37 and 40 respectively.
We inspected each of these versions manually. The version

9It is hard to reason about this since the source code and the implementation
details of Wappalyzer are not publicly available.
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Fig. 9. The mislabeled version number of 23 libraries.

management of both libraries is quite chaotic – more than
half of the versions are stored with incorrect version infor-
mation. Besides, mislabeling appears in both small libraries
with less than 4k Github stars – “Rapha&euml;l”, “Moment
Timezone”, “Processing.js”, and well-maintained libraries with
more than 40k Github stars – “Lo-Dash”, “core-js”, “Pixi.js”.
One conclusion is that incorrectly labeled version information
is common among web libraries, and determining the version
by the version property is not reliable.

Table VI displays the detection result comparison of PTV

TABLE VI
VERSION DETECTION COMPARISON BETWEEN PTV AND LDC /

WAPPALYZER / GROUND TRUTH ON THE 64 LIBRARIES TEST SUITE.
(ONLY CONSIDERING SOUND RESULTS)

PTV Frequency
versus LDC versus Wappalyzer versus DG

consistent 2246 (66.0%) 1208 (36.1%) 2503 (70.8%)
less precise 50 (1.5%) 26 (0.8%) 1030 (29.2%)

more precise 1106 (32.5%) 2109 (63.1%) 0
partly consistent 0 0 0

sum 3402 3343 3533

against two tools and the ground truth DG on 64 libraries
after excluding unsound results. We can see that to a very
large extent (around 99%), the results of PTV are consistent
or more precise than LDC and Wappalyzer. There are only a
small number of cases where PTV is less precise. These cases
are caused by mislabeling. In these PTV will provide less
precise but sound results if the pTrees of mislabeled versions
are identical. In 70.8% of cases, PTV gives an accurate single
version number consistent with the ground truth. In 29.2%
of cases, PTV gives a version range as the result, which is
less precise than the ground truth but still sound – the correct
version is within the identified range.

RQ3 Conclusion: PTV is guaranteed to be sound, while
LDC and Wappalyzer are not. Among 64 libraries, 23
of them have mislabeled versions leading to unsound
detection by LDC and Wappalyzer.

VI. RELATED WORK

Forest Algorithms. Trees and forests have been extensively
studied. Prior work mainly focus on mining frequent subtrees
from databases of labeled trees. To the best of our knowledge,
we are first to focus on the problem of finding the unique
structure of each tree in the forest and apply it to a real-world
detection task. Here we list some key prior works. [9] devel-
oped the TreeMiner algorithm for mining frequent ordered em-
bedded subtrees. [10] proposed the FREQT algorithm, which
uses an extension-only approach to find all frequent induced
subtrees in a database of one or more rooted ordered trees.
[11], [12] extended to general case that siblings may have
the same labels. [13], [14] first applied path join approach to
the mining. [15] introduced the FreeTreeMiner which applied
mining to labeled free trees, which was extended by [16]. [17]
gave a systematic overview of works in this field.

Library Detection. Library detection aims to find the code
reuse in software. PTDETECTOR is the first tool proposed
for web applications. Prior to it, many approaches have
been proposed to detect third-party libraries for desktop and
Android applications. The common strategy is extracting fea-
tures from the source code and matching the binary program
library. Binary Analysis Tool (BAT) [18] is a representative
binary matching method that utilizes constant values as the
detection feature. OSSPolice [19] introduced a hierarchical
indexing scheme to use better the constant information and
the sources’ directory tree. Then BCFinder [20] made the
indexing lightweight and the detection platform-independent.
B2SFinder [21] synthesized both constant and control-flow
features from binary based on their importance-weighting
methods to achieve reliable results. Xian Zhan et al. [22] con-
ducted the first empirical study on Android library detection
techniques and proposed tool selection suggestions.

Web Library Analysis. Many different kinds of library
analysis works have been done. [23] presented a pragmatic
approach to check the correctness of TypeScript files with
respect to JavaScript library implementations. [24] explored
the concept of a reasonably-most general client and introduce
a new static analysis tool for TypeScript verification. [25]
presented an automated method to detect JavaScript libraries’
conflicts and showed that one out of four libraries is potentially
conflicting. [26] developed the tool Tapir that finds the relevant
locations in the client code to help clients adapt their code
to the breaking changes. [27] proposed a tool to program-
matically detect hidden clones in npm and match them to
their source packages. Their tool utilizes a directory tree as a
detection feature, which does not apply to the front-end library.

VII. DISCUSSION AND CONCLUSION

To enable pTree-based JavaScript library version detection,
this paper introduces an algorithm to extract unique features
out of each tree in the forest of pTrees, one for each ver-
sion. This significantly reduces the space required for version
detection. The algorithm proposed in this paper, however, is
not limited to just library version detection. We believe, our
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algorithm will be a handy tool for any detection problem
whose feature can be represented as a tree structure.

Although PTV shows satisfactory performance on tree min-
imization and detection, there still exist limitations. The first
limitation is extensibility. JavaScript libraries are constantly
updated. When a new version is developed, the minimized
pTrees of the whole library need to be recalculated. Another
limitation is that the detection result of PTV is only sound
when the detection dataset is a subset of the tree-processing
dataset. In other words, if a library version on the web page
is not collected during the pTree generation stage, then PTV
may produce unsound results. However, considering that our
workflow is fully automated, we believe that running the PTV
offline feature generation periodically will provide appropriate
coverage for newly released libraries.
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