
PTV: Better Version Detection on JavaScript Library Based on
Unique Subtree Mining

XINYUE LIU and LUKASZ ZIAREK, University at Buffalo, USA

Identifying the versions of libraries used by a web page is an important task for sales intelligence, website
profiling, and even security analysis. Recent work uses tree structure to represent the property relationships of
the library at runtime, leading to more accurate library detection results. However, state-of-the-art tree-based
detection methods cannot be directly used to detect specific versions of libraries. This paper proposes a novel
algorithm to find the most unique structure out of each tree in a forest so that the size of the trees can be
greatly minified. We show that an implementation of our algorithm in a state-of-the-art library detection tool,
not only does not affect detection accuracy but reduces associated costs where tree-based detection methods
can be used to detect library versions. Our experiment results show that our tool reduces space requirements
by up to 99% and achieves better version detection for JavaScript libraries compared with existing tools.
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1 INTRODUCTION
With the increase in the variety of sophisticated web applications, the demand for front-end libraries
continues to grow. To illustrate this growth consider Cdnjs, the largest CDN (Content Delivery
Network) that serves websites. Cdnjs now contains 6,056 different JavaScript libraries1, almost
twice as many as one year ago. With the staggering growth in JavaScript front-end libraries, there is
an equal need for automatic library detection. JavaScript front-end library detectors are frequently
used for competitor analysis, sales intelligence, security analysis, and website profiling.

Version detection is a crucial problem in library detection, especially for security analysis. Current
static analysis methods for web applications require separate modeling of libraries[Sun and Ryu
2017]. Knowing the version of the library allows for more accurate modeling, thus leading to more
reliable static analysis results. To illustrate the scope of the problem, a recent experiment on 5,000 of
the top websites discovered that 76.6% of them include a vulnerability in a front-end library [Kadlec
2017]. The vast majority of these vulnerabilities were due to including an out-of-date version of
a common library. Library version detection can efficiently and automatically identify frontend
JavaScript applications that use library versions with potential risks.

Although JavaScript library detectors exist, unfortunately, there is no trivial way to determine
the library version when a library is detected. Even though some libraries store their version as
a string, allowing detectors to fetch and detect version based on this runtime value, this type of
labeling is not comprehensive. In fact many libraries incorrectly label their own versions or do
not consistently label their libraries. There is no standardized labeling format between different
libraries. Current library detectors rely on manually collecting version label patterns for version
detection. The most popular detector, LDC, can recognize versions for only 83 libraries. The most
accurate detector, PTdetector [Liu and Ziarek 2023], uses tree structures to automate library
feature extraction but cannot easily detect versions due to space requirements to store separate
trees for each version.
In this paper, we build on the idea of using tree structures for library detection pioneered in

PTdetector, and propose a new tool PTV (Shortened for “PTdetector-Version”) to enable tree-based
version detection for JavaScript Libraries. PTV is anonymously and publicly available here [GitHub

1Data source: https://cdnjs.com (Nov. 2023)
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2023b] and we plan on packaging PTV in an artifact submission. Our paper makes the following
contributions:

(1) a novel algorithm to minify trees used in library detection. Our idea is to extract the most
unique structure out of each tree in the forest, reducing the content being saved and used
for runtime detection. The correctness of the algorithm is proved and the time complexity is
analyzed. This algorithm is not limited to the JavaScript library version detection problem
and can be applied to any similar tree-based detection task.

(2) an implementation of our algorithm in PTV to minify every tree without affecting the
detection ability of tree based library detectors.

(3) a comprehensive evaluation of the version detection ability of PTV against existing library
detection methods. Our results show that PTV reduces the memory footprint by 99.33%
without affecting the detection accuracy, and outperforms the existing methods on all
libraries in our dataset.

2 BACKGROUND ANDMOTIVATION
2.1 Front-end JavaScript Library
JavaScript libraries are commonly designed to adapt to different runtime environments. The APIs
of the library are composed of functions wrapped in objects. These objects are registered in the
global context of the browser runtime, allowing the APIs to be globally available. Listing. 1 shows
simplified code from a popular library Lodash2 as an example to present the details of this process.

1 (function () {

2 function lodash(value) {

3 return new LodashWrapper(value);

4 }

5 // Define properties

6 lodash.chain = function(value) {

7 var result = lodash(value);

8 result.__wrapped__ = value;

9 return result;

10 }

11 lodash.VERSION = '4.9.0 ';

12 ...

13 // Export lodash

14 window._ = lodash;

15 }.call(this));

Listing 1. Simplified Lodash Browser Initialization Steps.

Listing. 1 presents a few key steps of the Lodash initialization in the browser. Line 1 defines an
anonymous function to wrap all the code, and line 2 defines the function lodash(value), which
will return an initialized object. Note that a function is also an object in JavaScript. Then in line
6 - line 12, various APIs (chain, VERSION, and others) are registered as lodash object properties.
Finally, in line 14, the lodash object is exposed to the identifier _ in the global context, i.e., registered
as a property of window3.

2A modern JavaScript utility library delivering modularity and performance.
3Code running in a web page share single global object window.

2



PTV: Better Version Detection on JavaScript Library Based on Unique Subtree Mining

2.2 Detection Methods
There are many web JavaScript library detectors on the market. Most of them act as browser
extensions that detect loaded libraries by checking specific properties at runtime. In Sec. 2.2.1
we use the most popular open-source detector, Library-Detector-for-Chrome (LDC), to illustrate
their detection mechanism on libraries and versions, as well as their drawbacks. In response to the
problems of these traditional detectors, PTdetector is proposed in [Liu and Ziarek 2023]. This
tool makes use of the runtime property tree structure to enable automated feature extraction and
more accurate library detection, which is discussed in Sec. 2.2.2.

2.2.1 Library-Detector-for-Chrome (LDC). LDC is the most popular (based on GitHub star rating)
open-source JavaScript library detector. It was created in January 2010 and is still being updated
today. It has 600+ stars on GitHub [GitHub 2023a] and 10,000+ users on the Chrome Extension
Store [Store 2023]. As a browser extension, LDC uses dynamic methods to detect libraries. Listing. 2
is a simplified JavaScript snippet of the LDC source code used to detect Lodash.
1 function testLodash () {

2 var _ = window._,

3 wrapper = _.chain (1);

4 if ( _ && wrapper.__wrapped__) {

5 return { version: _.VERSION || UNKNOWN };

6 }

7 return false;

8 }

Listing 2. LDC detects libraries by examining properties during the browser runtime.

Listing. 2 examines two JavaScript properties: _ and _.chain, in the global context. If both
of them exist, Lodash is assumed to be present, and the version is determined by the value in
property _.VERSION. We call such property containing version information as the version label.
Most detectors on the market today use similar detection methods. Such approach is straightforward
and easy to implement, but has a number of drawbacks shown in prior work [Liu and Ziarek 2023].
First, confirming the existence of a library by a few properties may lead to false positives due to
the commonness of global property conflicts in JavaScript. Second, such method can not handle
libraries wrapped by web bundlers, such as Webpack.

Fig. 1. pTree illustration of Lodash.

Unfortunately, identifying library version by reading
the version labels is not always reliable. The location
and the pattern of the version label varies between li-
braries, even between versions in a single library. With
the growing number of web libraries and versions, man-
ually finding accurate version label patterns requires is
infeasible. Over six thousands libraries are registered on
Cdnjs, but LDC can support version detection for only 83
libraries. In addition, as we will show in our experiments
(Sec. 5.3), not all JavaScript libraries are labeled with cor-
rect version information. Indeed, only half of the libraries in our dataset have comprehensive
labeling for their versions, and half of libraries that contain version labels have incorrect labels!

2.2.2 PTdetector. PTdetector introduces a new concept named pTree, which refers to a tree
formed by the property relationship between JavaScript variables in a runtime frame. Each vertex
in a pTree is assigned with the variable’s name, type, and value. Every pTree is rooted at the global
variable window. Fig. 1 shows a pTree generated from the Listing. 1.
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PTdetector takes a JavaScript file and its dependency information as input and automatically
extracts the runtime pTree as the detection feature using a trivial localhost client, and uses a
weight-based tree-matching algorithm to score the existence of libraries on a web page. The rich
details provided by the tree structure allow PTdetector to distinguish libraries more accurately
and detect libraries wrapped by packers. This approach has a number of advantages over traditional
methods, however, it does not support version detection.

2.3 Our Solution: pTree-based Version Detection
A naive, straightforward approach to enable pTree-based version detection is to generate a pTree
for every version of every library. Following this idea, at browser runtime, we first use the pTree of
the latest version of the library to determine if the library is loaded on the web page, as is done in
PTdetector. After confirming the loaded library name and loaded location in the browser pTree,
we then conduct tree matching against the pTrees of all versions of this library to determine which
version has the best match. We discuss the challenges to this solution in the subsections below.

2.3.1 Correctness. Suppose that Lodash only has three versions – 𝐴, 𝐵, and 𝐶 . Fig. 2 shows the
pTrees for these versions. Consider if all vertices and edges of the pTree representing library version
𝐴 are detected at runtime, can we conclude that the loaded version is 𝐴? Counter-intuitively, the
answer is no. Consider that all vertices and edges in the pTree of version 𝐴 also exist in the pTree
of version 𝐶 . Thus, we cannot tell if the loaded version of Lodash is 𝐶 or 𝐴. We call the pTree
of version 𝐶 a supertree 4 of the pTree of version 𝐴. This situation is rather common in library
version detection due to the high similarity in structures between library versions. One pTree may
have multiple supertrees. In Sec. 3.5, we will introduce an algorithm identify and reason about
supertrees.

Fig. 2. Example of pTrees of different versions of Lodash. The type and value of each vertex are omitted in the

figure. Assume that any vertices with the same name have the same type and value as well.

2.3.2 Memory Footprint. Today, there are 2,509,859 library versions on Cdnjs. According to the
memory overhead estimation in the PTdetector paper, if we set the pTree node limit as 50, then
over 8G space is needed to store all pTrees. Unfortunately, even a pTree with maximum 50 nodes is
not enough to distinguish the subtle differences between the versions.
Our insight is to extract most unique structure out of each pTree, reducing the content being

saved and used for runtime detection. For example, in Fig. 2, we can observe that the property
window._.chain appears in all versions, so this property does not serve any distinguishing purpose
in version detection, and should be discarded. In contrast, the property window._.paste only
appears in version 𝐵 and the property window._.read only appears in version 𝐶 . Such property
can completely substitute the functionality of the original pTree, being able to uniquely characterize
the version. In other words, if the property window._.paste is detected during the runtime, we
have confidence that the full pTree of version 𝐵 can be detected. We call such structure as unique

4Similar to a superset. The formal definition of supertree will be given in Sec. 3.3
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subtree. Following this intuition, we are able to design a method to minify every pTree without
affecting the detection ability. In Sec. 3.4, we will present the tree minification algorithm that can
find the unique subtree of each tree. Careful readers will notice that we are not able to find a unique
subtree for the pTree of version 𝐴. This occurs because the pTree of version 𝐴 has a supertree in
our example. Before mining the unique subtree in a pTree, all its supertrees should be excluded.
You will understand why it is safe to do so in Sec. 3.4.

3 ALGORITHM DESIGN
In this section we provide the core algorithms and their complexity analysis that underpin our
implementation of pTree-based JavaScript library detection.

3.1 Basic Definition
3.1.1 Labeled Tree. We denote a labeled tree as 𝑇 = (𝑉 , 𝐸, Σ, 𝐿), consisting of a vertex set 𝑉 , an
edge set 𝐸, an alphabet Σ for vertex labels, and a labeling function 𝐿 : 𝑉 → Σ. The size of 𝑇 is the
number of vertices in the tree.
A path is a sequence of vertices 𝑝 = (𝑣1, 𝑣2, ..., 𝑣𝑛) ∈ 𝑉 ×𝑉 × ... ×𝑉 such that 𝑣𝑖 is adjacent to

𝑣𝑖+1 for 1 ≤ 𝑖 < 𝑛. When the path’s first vertex is root and the last vertex is a leaf, we call it a full
path. For a tree 𝑇 , we use 𝑇 .𝑃 to represent the set of all paths in 𝑇 , and 𝑇 .𝑃𝑓 to represent the set of
all full paths in 𝑇 .

3.1.2 Induced Subtree. For a tree 𝑇 with vertex set 𝑉 and edge set 𝐸, we say that a tree 𝑇 ′ with
vertex set𝑉 ′ and edge set 𝐸′ is an induced subtree of𝑇 , denoted as𝑇 ′ ⪯ 𝑇 , if and only if (1)𝑉 ′ ⊆ 𝑉 ,
(2) 𝐸′ ⊆ 𝐸, (3) The labeling of 𝑉 ′ is preserved in 𝑇 ′. If 𝑇 ′ ⪯ 𝑇 , we also say that 𝑇 contains 𝑇 ′.
Intuitively, an induced subtree 𝑇 ′ can be obtained by repeatedly removing leaf vertices in 𝑇 , or
possibly the root vertex if it has only one child.

We say two trees𝑇1 and𝑇2 are isomorphic to each other, denoted as𝑇1 = 𝑇2, if there is a one-to-one
mapping from the vertices of 𝑇1 to the vertices of 𝑇2 that preserves vertex labels and adjacency.
Based on the definition, we are easy to know that relation ⪯ is antisymmetric and transitive, i.e.,
𝑇1 ⪯ 𝑇2 and 𝑇2 ⪯ 𝑇1 implies 𝑇1 = 𝑇2; 𝑇1 ⪯ 𝑇2 and 𝑇2 ⪯ 𝑇3 implies 𝑇1 ⪯ 𝑇3. We use symbol 𝑇1 ≺ 𝑇2
when 𝑇1 ⪯ 𝑇2 but 𝑇1 ≠ 𝑇2.

3.2 Problem Description
We can generalize the version detection problem in the following description. Assume there is a
detection object labeled tree 𝜙 and a collection of detection samples, represented as a set of labeled
trees Γ = {𝑇1,𝑇2, ...,𝑇𝑛}.
In our practical problem, Γ is a collection of generated pTrees from one library under different

versions, and 𝜙 is the detected library pTree generated during web page runtime. Each vertex in
the pTree will carry extra information – name, value, and type - represented as labels mapping to
vertices.

We say a tree in Γ is the base tree of 𝜙 if 𝜙 is grown from it though adding root and leaf vertices.
For simplicity, we define the predicate 𝐵𝜙 (𝑇 ): tree𝑇 ∈ Γ is the base tree of𝜙 . Based on our definition,
we can deduce that the base tree has the following two properties.

(1) Necessity: if 𝐵𝜙 (𝑇 ), then 𝑇 ⪯ 𝜙 ;
(2) Uniqueness: exact one 𝑇 ∈ Γ satisfies 𝐵𝜙 (𝑇 ).
The first principle introduces the necessary condition of the base tree. If 𝑇 is a base tree of 𝜙 ,

then 𝑇 has to be an induced subtree of 𝜙 . The second principle claims that only one sample tree is
the base tree. We want to find the exact base tree that the detection object tree 𝜙 is built from. And
this matches our practical situation – a loaded library should only have one version.
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Besides, the detection object tree 𝜙 is restricted by the following property:

Proposition 3.2.1. Assume𝑇𝑘 is the base tree, we have ∀𝑝 ∈ 𝜙.𝑃 , if 𝑝 ∉ 𝑇𝑘 .𝑃 , then 𝑝 ∉
⋃
𝑇 ∈Γ 𝑇 .𝑃𝑓 .

This property indicates that during the 𝜙 growing process, i.e., when more vertices are added to
the base tree to build 𝜙 , the newly created paths will not be the full paths already in sample trees in
Γ. Intuitively, this property ensures that 𝜙 is not a mixture of multiple trees in Γ, otherwise there is
no way to uniquely determine the base tree. This property holds in our detection task, because
multiple versions of a library will be not loaded in the same place.

With these properties, the question is: given Γ and 𝜙 , how to find the 𝑇 ∈ Γ, such that 𝐵𝜙 (𝑇 )?

3.3 Simple Solution
First, in order to simplify later descriptions, here we make some additional definitions.
For two labeled trees 𝑇 and 𝑇 ′, if 𝑇 ⪯ 𝑇 ′, we say 𝑇 ′ is a supertree of 𝑇 ; if 𝑇 ≺ 𝑇 ′, we say 𝑇 ′ is a

strict supertree of𝑇 . Given a tree set Γ, we use the symbol S(𝑇 ) to represent the set of all supertrees
of 𝑇 with respect to Γ, named supertree set. In other words, S(𝑇 ) = {𝑇 ′ ∈ Γ | 𝑇 ⪯ 𝑇 ′}. Similarly, We
use the symbol S𝑠𝑡 (𝑇 ) to represent the set of all strict supertrees of 𝑇 .
We define the equivalence class of a tree 𝑇 with respect to Γ as the set of all trees in Γ that is

isomorphic to𝑇 , denoted as [𝑇 ], where [𝑇 ] = {𝑇 ′ ∈ Γ |𝑇 ′ = 𝑇 }. Easy to see that [𝑇 ] = S(𝑇 )−S𝑠𝑡 (𝑇 ).
We provide an example for these definitions in Fig. 3.

Fig. 3. Assume Γ consists of six trees in the plot, then we have S(𝑇1) = {𝑇1,𝑇2,𝑇3,𝑇6}, S𝑠𝑡 (𝑇1) = {𝑇2,𝑇6},
[𝑇1] = {𝑇1,𝑇3}.

Furthermore, let’s extend the predicate 𝐵𝜙 to 𝐵∗
𝜙
when the variable is a set of trees. The 𝐵∗

𝜙
(𝑆) is

defined as “ ∃𝑇 ∈ 𝑆 such that 𝐵𝜙 (𝑇 )”; and the ¬𝐵∗
𝜙
(𝑆) is defined as “ ∀𝑇 ∈ 𝑆 , ¬𝐵𝜙 (𝑇 )”. Based on

this definition, we can reach two corollaries about 𝐵∗
𝜙
.

Corollary 3.3.1. For any two sets 𝑆1, 𝑆2 ⊆ Γ that satisfy 𝑆1 ⊆ 𝑆2, if 𝐵∗𝜙 (𝑆2) and ¬𝐵
∗
𝜙
(𝑆1), then

𝐵∗
𝜙
(𝑆2 − 𝑆1).

Corollary 3.3.2. For any two sets 𝑆1, 𝑆2 ⊆ Γ that satisfy 𝑆1 ⊆ 𝑆2, if ¬𝐵∗𝜙 (𝑆2), then ¬𝐵
∗
𝜙
(𝑆1).

Coro. 3.3.1 is due to the existence of the base tree – if the base tree does not exist in 𝑆1, then it
must be in 𝑆2 − 𝑆1. Coro. 3.3.2 describes that if the base tree does not exist in a set, then will not be
in its subset as well. Both corollaries can be obtained directly from the definition of 𝐵∗

𝜙
, so the proof

is omitted. With these corollaries in hand, we can reach a vital proposition (Prop. 3.3.1), which
enables us to determine which tree in Γ is the base tree through induced subtree judgment.

Lemma 3.3.1. For an induced subtree 𝑇 of 𝜙 , 𝐵∗
𝜙
(S(𝑇 )).

Proof. First let’s prove that ¬𝐵∗
𝜙
(Γ − S(𝑇 )). Suppose 𝐵∗

𝜙
(Γ − S(𝑇 )), which means that there

exists a tree 𝑇 ′ in Γ, such that 𝑇 ⪯̸ 𝑇 ′ and 𝐵𝜙 (𝑇 ′). From 𝑇 ⪯̸ 𝑇 ′, we know that there is a full path 𝑝
of𝑇 not in the path set of𝑇 ′. The lemma gives that𝑇 is an induced subtree of 𝜙 , so 𝑝 ∈ 𝜙.𝑃 . Hence,
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𝑝 is a 𝑝𝑎𝑡ℎ satisfies all the conditions in Prop. 3.2.1 but contradicts its conclusion – 𝑝 ∉
⋃
𝑇 ∈Γ 𝑇 .𝑃𝑓 .

As a result, ¬𝐵∗
𝜙
(Γ − S(𝑇 )). Then with Coro. 3.3.1, because 𝐵∗

𝜙
(Γ), we have 𝐵∗

𝜙
(S(𝑇 )). □

Lemma 3.3.2. For a tree 𝑇 which is not an induced subtree of 𝜙 , ¬𝐵∗
𝜙
(S(𝑇 )).

Proof. Suppose 𝐵∗
𝜙
(S(𝑇 )), which means that there exists a tree 𝑇 ′ in Γ, such that 𝑇 ⪯ 𝑇 ′

and 𝐵𝜙 (𝑇 ′). According to the necessity, 𝑇 ′ ⪯ 𝜙 , so 𝑇 is an induced subtree of 𝜙 (transitiveness).
Contradiction. □

Proposition 3.3.1. For an induced subtree𝑇 of 𝜙 , if ∀𝑇𝑠 ∈ S𝑠𝑡 (𝑇 ),𝑇𝑠 ⪯̸ 𝜙 , then 𝐵∗𝜙 ( [𝑇 ]); otherwise,
¬𝐵∗

𝜙
( [𝑇 ]).

Proof. If ∀ 𝑇𝑠 ∈ S𝑠𝑡 (𝑇 ), 𝑇𝑠 ⪯̸ 𝜙 , then ¬𝐵∗ (𝑇𝑠 ) (Necessity). So ¬𝐵∗𝜙 (S𝑠𝑡 (𝑇 )). We know that
𝐵∗
𝜙
(S(𝑇 )) because𝑇 ⪯ 𝜙 (Lemma. 3.3.2). Then, based on Coro. 3.3.1, we have 𝐵∗

𝜙
(S(𝑇 ) −S𝑠𝑡 (𝑇 )) ⇒

𝐵∗
𝜙
( [𝑇 ]).
Otherwise, if there exits a tree 𝑇𝑠 in S𝑠𝑡 (𝑇 ), such that 𝑇𝑠 ⪯ 𝜙 . Then based on Lemma. 3.3.1, we

know 𝐵∗
𝜙
(S(𝑇𝑠 )). So ¬𝐵∗𝜙 (Γ − S(𝑇𝑠 )). Consider that 𝑇 ≺ 𝑇𝑠 , so [𝑇 ] ⊆ Γ − S(𝑇𝑠 ), thus ¬𝐵∗𝜙 ( [𝑇 ]). □

Prop. 3.3.1 shows that we can determine whether the base tree exists in 𝑇 ’s equivalence class by
checking𝑇 ⪯ 𝜙 and all its strict supertrees’𝑇𝑠 ⪯ 𝜙 . In𝑇 ’s equivalence class, each tree is isomorphic
to the other, so there is no method to tell who is the base tree. Ensuring the base tree is in a specific
equivalence class is a satisfactory result for the problem. The algorithm to find the base tree in Γ is
described as follows: iterate all trees in Γ, for each tree 𝑇 ∈ Γ, check whether 𝑇 ⪯ 𝜙 and whether
every strict supertree of it satisfies 𝑇𝑠 ⪯ 𝜙 . Combined with Prop. 3.3.1, the result can be 𝐵∗

𝜙
( [𝑇 ])

or ¬𝐵∗
𝜙
( [𝑇 ]). If the former is the case, then the algorithm terminates and the output is [𝑇 ]). This

algorithm ensures that the equivalence class in which the base tree is located will be found.

3.4 Unique Subtree Mining
Although we have given a deterministic algorithm to find the base tree, in our practical application
scenarios, the sample trees (trees in Γ) are usually large and numerous. If the algorithm in the
previous section is used for runtime detection, the time and space costs are unaffordable. As a result,
in this section, we propose an algorithm to minify sample trees’ size by unique subtree mining and
ensure that the previous algorithm is still valid.

Algo. 1 shows the overall algorithm to reduce the size of sample trees. The input to the algorithm
is the sample tree set Γ. For each 𝑇 ∈ Γ, the output is its supertree set S(𝑇 ) and a unique subtree
𝑇𝑚 . We envision that 𝑇𝑚 is a tree with a smaller size than 𝑇 but the supertree set does not change.
Namely, S(𝑇𝑚) = S(𝑇 ). Note that the 𝑇 in Prop. 3.3.1 is not required to be a member of the set Γ;
this proposition applies whenever 𝑇𝑚 ⪯ 𝜙 , so we can use 𝑇𝑚 to replace the original 𝑇 during the
runtime detection. If S(𝑇𝑚) = S(𝑇 ), then 𝑇𝑚 must be an induced subtree of 𝑇 , otherwise 𝑇 ∈ S(𝑇 )
while 𝑇 ∉ S(𝑇𝑚). Therefore, our algorithm generates the specific 𝑇𝑚 for each 𝑇 ∈ Γ by using a
subset of the tree paths to reconstruct an induced subtree that satisfies S(𝑇𝑚) = S(𝑇 ).
For each sample tree, Algo. 1 first calculates the path coloring, whose details are presented in

Algo. 2. In Algo. 2 line 1, we initialize the coloring collection Ω as an empty set. For each full path
in tree 𝑇 , we use a coloring set 𝜔 to record the path’s occurrence in other trees in Γ. If the full path
occurs in the path set of another tree 𝑇𝑖 , the tree’s index 𝑖 will be recorded in 𝜔 . Here we choose
the full path instead of the normal path because we want to make sure the size of the generated 𝑇𝑚
is large enough to prevent false positives during detection. In line 5, we combine all the coloring
set 𝜔 of each full path together as a coloring collection Ω.
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Algorithm 1 Unique Subtree Mining
Input: the sample tree set: Γ
Output: S(𝑇 ) and the unique subtree 𝑇𝑚 for each 𝑇 ∈ Γ
1: for each 𝑇 ∈ Γ do
2: Ω ← 𝑃𝑎𝑡ℎ𝐶𝑜𝑙𝑜𝑟𝑖𝑛𝑔 (𝑇, Γ)
3: S(𝑇 ) ← ⋂

𝜔∈Ω 𝜔

4: Let Ω := {Γ − 𝜔 | 𝜔 ∈ Ω}
5: 𝐼 ← 𝑀𝑖𝑛𝐶𝑜𝑣𝑒𝑟𝑆𝑒𝑡 (Ω, Γ − S(𝑇 ))
6: 𝑇𝑚 ← 𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒𝐹𝑟𝑜𝑚𝑃𝑎𝑡ℎ (𝑇, 𝐼 )
7: end for

Algorithm 2 PathColoring
Input: the target set: Γ, a tree: 𝑇 ∈ Γ
Output: a coloring collection Ω
1: Initialization: Ω ← ∅
2: for each full path 𝑓 in 𝑇 do
3: let 𝑃𝑖 represents the path set of each 𝑇𝑖 ∈ Γ
4: 𝑓 ’s coloring set 𝜔 := {𝑇𝑖 | 𝑓 ∈ 𝑃𝑖 }
5: Ω ← Ω ∪ {𝜔}
6: end for

After getting the coloring collection Ω, in Algo. 1 line 3, the value of S(𝑇 ) is obtained by
intersecting all elements in the Ω.

Proposition 3.4.1.
⋂
𝜔∈Ω 𝜔 = S(𝑇 ).

Proof. If a tree𝑇 ′ ∈ Γ is in
⋂
𝜔∈Ω 𝜔 , then all the full paths of𝑇 is contained in the path set of𝑇 ′,

so 𝑇 ⪯ 𝑇 ′; otherwise, at least one full path of 𝑇 is not in the path set of 𝑇 ′, so 𝑇 ⪯̸ 𝑇 ′. As a result,⋂
𝜔∈Ω 𝜔 equals the set of all supertrees of 𝑇 . □
The unique subtree𝑇𝑚 is generated from a subset of full paths of𝑇 . To ensure S(𝑇𝑚) = S(𝑇 ), we

need to find the smallest subset of Ω, such that the intersection of all its elements still equals S(𝑇 ).
If we complement both sides of the equation in Prop. 3.4.1, we can get

⋃
𝜔∈Ω (Γ −𝜔) = Γ − S(𝑇 ) by

De Morgan’s laws. In this form, our question is equivalent to a well-known NP-complete problem –
the set cover problem – which is described as follows.

Given a set of elements {1, 2, . . . , 𝑛} (called the universe) and a collection 𝑆 of𝑚 sets
whose union equals the universe, the set cover problem is to identify the smallest
sub-collection of 𝑆 whose union equals the universe.

In our algorithm, the collection 𝑆 in the description of the set cover problem is the inversed
coloring collection Ω defined in Algo. 1 line 4; and the universe𝑈 is Γ − S(𝑇 ). In line 5, we invoke
Algo. 3 to calculate the minimum cover subset of Ω. This algorithm will return an index set 𝐼 , which
contains the index of all elements that constitute the minimum cover subset. Using these indexes,
in line 6, we construct the unique subtree 𝑇𝑚 by invoking Algo. 4.

Algo. 3 is a famous greedy algorithm to solve the set cover problem within approximate polyno-
mial time. At each stage, it chooses the set with the largest number of uncovered elements. This
algorithm achieves an approximation ratio of 𝐻 (𝑠), where 𝑠 is the size of the set to be covered. In
other words, it finds a set covering that may be 𝐻 (𝑛) times as large as the minimum one, where
𝐻 (𝑛) is the n-th harmonic number:
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Algorithm 3MinCoverSet
Input: a set collection: 𝑆 = {𝜔1, 𝜔2, ..., 𝜔𝑛}, the universe𝑈
Output: a set 𝐼 ⊆ {1, 2, ..., 𝑛}, such that

⋃
𝑖∈𝐼 𝜔𝑖 = 𝑈

1: Initialization: 𝐼 ← ∅, 𝐶 ← ∅
2: while 𝐶 ≠ 𝑈 do
3: Find the 𝑖 ∈ {1, 2, ..., 𝑛} − 𝐼 , such that |𝐶 ∪ 𝜔𝑖 | is largest
4: 𝐼 ← 𝐼 ∪ {𝑖}
5: 𝐶 ← 𝐶 ∪ 𝜔𝑖
6: end while

𝐻 (𝑛) =
𝑛∑︁
𝑘=1

1
𝑘
≤ ln𝑛 + 1 (1)

Algorithm 4 BuildTreeFromPath
Input: a tree 𝑇 with a path set 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑘 }, an index set 𝐼 ⊆ {1, 2, ..., 𝑘}
Output: the unique subtree 𝑇𝑚
1: Initialization: 𝑇𝑚 ← ∅
2: for each 𝑖 ∈ 𝐼 do
3: Add path 𝑝𝑖 to the tree 𝑇𝑚
4: end for

Algo. 4 shows the detail of 𝑇𝑚 constructing. The input to the algorithm is a tree 𝑇 and an index
set 𝐼 . We select the path whose index appears in the index set to construct the tree.

Lastly, let’s use the trees in Fig. 3 to illustrate the whole unique subtree mining process. Here Γ =

{𝑇1,𝑇2,𝑇3,𝑇4,𝑇5,𝑇6}. For 𝑇1, firstly, we calculate the coloring of each full path of it in Algo. 2. There
are three full paths and the corresponding coloring sets𝜔 of𝑇1 shown in Table 1. Thenwe can get the
value of S(𝑇1) by union all the𝜔 . And the inversed coloring collection Ω = {{𝑇5}, {𝑇5}, {𝑇4,𝑇5}}. The
Algo. 3 helps us to find the minimum sets from collection Ω whose union equals Γ−S(𝑇1) = {𝑇4,𝑇5}.
And we can see that the combination of path (1, 2, 3) and (1, 2, 5) can meet the requirement. As
a result, the unique subtree (𝑇1)𝑚 consists of these two paths. Similarly, we can get other unique
subtrees. All unique subtrees are shown in Fig. 4.

Table 1. Unique subtree mining algorithm calculation result on 𝑇1 in Fig. 3.

full paths 𝜔 S(𝑇1) Ω
(1, 2, 3) {𝑇1,𝑇2,𝑇3,𝑇4,𝑇6}

{𝑇1,𝑇2,𝑇3,𝑇6}
{{𝑇5}, {𝑇5},
{𝑇4}}

(1, 2, 4) {𝑇1,𝑇2,𝑇3,𝑇4,𝑇6}
(1, 2, 5) {𝑇1,𝑇2,𝑇3,𝑇5,𝑇6}

3.5 Strict Supertree Set Minify
In Prop. 3.3.1 we need to verify all strict supertrees of 𝑇 to determine whether the base tree is
located in [𝑇 ]; however, it is not necessary to iterate through the whole S𝑠𝑡 (𝑇 ). In Sec. 3.6, we will
prove that the trees in the minified strict supertree set S𝑚 (𝑇 ), which is a subset of S𝑠𝑡 (𝑇 ), are all
we need to check. Algo. 5 shows the process of generating [𝑇 ] and S𝑚 (𝑇 ) for each 𝑇 ∈ Γ.
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Fig. 4. The unique subtrees of trees in Fig. 3.

Algorithm 5 Strict Supertree Set Minify
Input: a tree 𝑇 with its supertree set S(𝑇 )
Output: [𝑇 ] and the minified strict supertree set S𝑚 (𝑇 )
1: Initialization: [𝑇 ] ← ∅, S𝑚 (𝑇 ) ← ∅
2: for each supertree 𝑇 ′ ∈ S(𝑇 ) do
3: if 𝑇 ∈ S(𝑇 ′) then
4: [𝑇 ] ← [𝑇 ] ∪ {𝑇 ′}
5: end if
6: end for
7: S𝑠𝑡 (𝑇 ) := S(𝑇 ) − [𝑇 ]
8: while S𝑠𝑡 (𝑇 ) ≠ ∅ do
9: Find 𝐾 ∈ S𝑠𝑡 (𝑇 ), such that |S(𝐾) | is the largest
10: S𝑠𝑡 (𝑇 ) ← S𝑠𝑡 (𝑇 ) − S(𝐾)
11: S𝑚 (𝑇 ) ← S𝑚 (𝑇 ) ∪ {𝐾}
12: end while

In Algo. 5 line 1 - 6, we calculate [𝑇 ]. The idea is simple: for a supertree of 𝑇 , if 𝑇 ∈ S(𝑇 ′)
and 𝑇 ′ ∈ S(𝑇 ), then 𝑇 = 𝑇 ′. Next, we get the value of S𝑠𝑡 (𝑇 ) in line 7 by removing isomorphic
supertrees from S(𝑇 ). From line 8, we start to generate the minified strict supertree set S𝑚 (𝑇 ). The
algorithm always selects the element of S𝑠𝑡 (𝑇 ) that has the largest number of supertrees. This
greedy algorithm ensures that S𝑚 (𝑇 ) holds the Prop. 3.5.1.

Lemma 3.5.1. If 𝑇 ⪯ 𝑇 ′, then S(𝑇 ′) ⊆ S(𝑇 ).
Proof. ∀𝑡 ∈ S(𝑇 ′), based on the definition of the supertree set, we know 𝑇 ′ ⪯ 𝑡 . According to

transitiveness, 𝑇 ⪯ 𝑇 ′ ⪯ 𝑡 , so 𝑡 ∈ S(𝑇 ). Therefore, S(𝑇 ′) ⊆ S(𝑇 ). □
Proposition 3.5.1. S𝑚 (𝑇 ) is the smallest subset of S𝑠𝑡 (𝑇 ) that satisfies

⋃
𝐾∈S𝑚 (𝑇 ) S(𝐾) = S𝑠𝑡 (𝑇 ).

Proof. We prove this using the greedy algorithm proof scheme.
(1) (Greedy Choice Property) Our greedy choice is 𝐾 whose supertree set size is the largest in

S𝑠𝑡 (𝑇 ). Suppose there is an optimal solution O that does not contain 𝐾 . Because 𝐾 ∈ S𝑠𝑡 (𝑇 ), there
exists an 𝐾 ′ in solution O such that 𝐾 ∈ S(𝐾 ′); otherwise it can’t satisfy ⋃

𝐾∈S𝑚 (𝑇 ) S(𝐾) = S𝑠𝑡 (𝑇 ).
So, 𝐾 ′ ⪯ 𝐾 . Based on Lemma. 3.5.1, we know S(𝐾) ⊆ S(𝐾 ′). In our greedy choice, |S(𝐾) | is the
largest, so S(𝐾) = S(𝐾 ′). Hence, we can replace 𝐾 ′ by 𝐾 in O and still get an optimal solution.
(2) (Optimal Substructure Property) Let O be an optimal solution containing 𝐾 . Consider the

subproblem S′𝑠𝑡 (𝑇 ) = S𝑠𝑡 (𝑇 ) − S(𝐾). We need to prove O contains the optimal solution for S′𝑠𝑡 (𝑇 ).
Suppose O − {𝐾} is not an optimal solution for S′𝑠𝑡 (𝑇 ). We denote the optimal solution for S′𝑠𝑡 (𝑇 )
by O′. Then |O′ | < |O − {𝐾}| = |O| − 1. Given that (⋃

𝐾∈O′ S(𝐾)) ∪ S(𝐾) = S𝑠𝑡 (𝑇 ), O′ ∪ {𝐾} is a
solution with a smaller size than O. Hence, O is not an optimal solution. Contradiction. □
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Take the trees in Fig. 3 as an example. The value of S𝑚 (𝑇1) should be {𝑇2}, because S(𝑇2) =
{𝑇2,𝑇6} = S𝑠𝑡 (𝑇1). Similarly, we have S𝑚 (𝑇2) = {𝑇6}, S𝑚 (𝑇3) = {𝑇2}, S𝑚 (𝑇4) = {𝑇1}, S𝑚 (𝑇5) = {𝑇6},
and S𝑚 (𝑇6) = ∅.

3.6 Runtime Detection
So far, for each 𝑇 ∈ Γ, we get its unique subtree 𝑇𝑚 in Sec. 3.4 and its minified strict supertree set
S𝑚 (𝑇 ) in Sec. 3.5. Now, we can rewrite Prop. 3.3.1 in the following new version.

Proposition 3.6.1. If 𝑇𝑚 ⪯ 𝜙 and ∀𝐾 ∈ S𝑚 (𝑇 ), 𝐾𝑚 ⪯̸ 𝜙 , then 𝐵∗𝜙 ( [𝑇 ]); otherwise, ¬𝐵
∗
𝜙
( [𝑇 ]).

Proof. We divide the condition into three cases.
(1) 𝑇𝑚 ⪯̸ 𝜙 .
From Lemma. 3.3.2, we have ¬𝐵∗

𝜙
(S(𝑇𝑚)). Due to [𝑇 ] ⊆ S(𝑇 ) = S(𝑇𝑚), we have ¬𝐵∗𝜙 ( [𝑇 ]).

(2) 𝑇𝑚 ⪯ 𝜙 , and ∃ 𝐾 ∈ S𝑚 (𝑇 ), such that 𝐾𝑚 ⪯ 𝜙 .
From Lemma. 3.3.1, 𝐵∗

𝜙
(S(𝐾𝑚)). Because S(𝐾𝑚) = S(𝐾), we have 𝐵∗𝜙 (S(𝐾)), so ¬𝐵

∗
𝜙
(Γ − S(𝐾)).

From the definition of S𝑚 (𝑇 ), we know 𝑇 ≺ 𝐾 , so [𝑇 ] ⊆ Γ − S(𝐾). Therefore, ¬𝐵∗
𝜙
( [𝑇 ]).

(3) 𝑇𝑚 ⪯ 𝜙 , and ∀𝐾 ∈ S𝑚 (𝑇 ), 𝐾𝑚 ⪯̸ 𝜙 .
Based on Lemma. 3.3.2, we can get ∀𝐾 ∈ S𝑚 (𝑇 ), ¬𝐵∗𝜙 (S(𝐾𝑚)), then ¬𝐵

∗
𝜙
(S(𝐾)). So we have

¬𝐵∗
𝜙
(⋃

𝐾∈S𝑚 (𝑇 ) S(𝐾)), and this can be converted to ¬𝐵∗
𝜙
(S𝑠𝑡 (𝑇 )) by Prop. 3.5.1. Furthermore, be-

cause 𝑇𝑚 ⪯ 𝜙 , by Lemma. 3.3.1, we have 𝐵∗
𝜙
(S(𝑇𝑚)), thus 𝐵∗𝜙 (S(𝑇 )). Consequently, here comes

𝐵∗
𝜙
(S(𝑇 ) − S𝑠𝑡 (𝑇 )) ⇒ 𝐵∗

𝜙
( [𝑇 ]). □

Based on Prop. 3.6.1, given Γ and 𝜙 , we propose an algorithm to detect the base tree of 𝜙 in Γ,
shown in Algo. 6. Let’s say the original sample tree set is Γ = {𝑇1,𝑇2, ...,𝑇𝑛}. Then the first input to
the algorithm is a unique subtree set Γ𝑚 = {(𝑇1)𝑚, (𝑇2)𝑚, ..., (𝑇𝑛)𝑚}. We represent the indexes of
the trees in Γ𝑚 as 𝐼 = {1, 2, ..., 𝑛}. Then, we define two mappings 𝑓𝑠 and 𝑓𝑒 : 𝐼 → P(𝐼 ), where for an
index 𝑘 ∈ 𝐼 , 𝑓𝑠 (𝑘) maps to the set of all index of trees in S𝑚 (𝑇𝑘 ), and 𝑓𝑒 (𝑘) maps to the set of all
index of trees in [𝑇𝑘 ]. Namely, 𝑓𝑠 (𝑘) = {𝑖 | 𝑇𝑖 ∈ S𝑚 (𝑇𝑘 )}, and 𝑓𝑒 (𝑘) = {𝑖 | 𝑇𝑖 ∈ [𝑇𝑘 ]}. The last input
to the algorithm is the detect object tree 𝜙 .

Algorithm 6 Runtime Detection
Input: the unique subtrees Γ𝑚 = {(𝑇1)𝑚, (𝑇2)𝑚, ..., (𝑇𝑛)𝑚}, two mappings 𝑓𝑠 , 𝑓𝑒 , and the detect

object tree 𝜙
Output: the indexes of possible base trees
1: for each 𝑖 ∈ {1, 2, ..., 𝑛} do
2: if (𝑇𝑖 )𝑚 ⪯ 𝜙 then
3: for each 𝑗 ∈ 𝑓𝑠 (𝑖) do
4: if (𝑇𝑗 )𝑚 ⪯ 𝜙 then
5: go to 9
6: end if
7: end for
8: return 𝑓𝑒 (𝑖)
9: end if
10: end for

Algo. 6 guarantees to return the equivalence class of the base tree in Γ – it will traverse all
equivalence classes to find the one that meets the condition in Prop. 3.6.1. Note that this algorithm
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does not require the original sample trees Γ as input, resulting in faster speed and less space
occupied during the detection runtime.

3.7 Algorithm Complexity
It is obvious that most part of the algorithm is in trivial linear time complexity. In this section,
we only discuss two non-trivial parts – path coloring (Algo. 2) and minimum cover set (Algo. 3).
Suppose there are 𝑛 trees in Γ, and 𝑁 vertices in Γ.

3.7.1 Path Coloring. To get path coloring, Algo. 2 iterates through all full paths in the tree and
check whether these full paths appear in the path set of other trees in Γ. In our application, all the
tree in Γ share a same root “window”, and the “window” vertex will not appear at other places except
root. Hence, given a full path 𝑓 and a tree 𝑇 , we only need at most |𝑓 | times vertex comparisons to
find out whether 𝑓 ∈ 𝑇 .𝑃 , where |𝑓 | represents the number of vertices on the path 𝑓 . Given a tree
𝑇1 ∈ Γ, the time to calculate the path coloring of 𝑇1 is:

𝑛 ·
∑︁

𝑓 ∈𝑇1 .𝑃𝑓

|𝑓 | (2)

Observe that the number of full path in a tree is no more than its vertex number, and the vertex
number of any full path is no more than tree’s vertex number either. We have:

𝑛 ·
∑︁

𝑓 ∈𝑇1 .𝑃𝑓

|𝑓 | ≤ 𝑛 · |𝑇1.𝑃𝑓 | · |𝑇1 .𝑉 | ≤ 𝑛 · |𝑇1.𝑉 |2 (3)

Hence, the time to calculate the path coloring for all trees in Γ is:

𝑇 (path coloring) = 𝑛 ·
∑︁
𝑓 ∈𝑇1 .𝐹

|𝑓 | + 𝑛 ·
∑︁
𝑓 ∈𝑇2 .𝐹

|𝑓 | + · · · + 𝑛 ·
∑︁
𝑓 ∈𝑇𝑛 .𝐹

|𝑓 |

≤ 𝑛 ·
∑︁
𝑇 ∈Γ
|𝑇 .𝑉 |2 ≤ 𝑛 · (

∑︁
𝑇 ∈Γ
|𝑇 .𝑉 |)2 = 𝑛 · 𝑁 2

(4)

So the time complexity of path coloring algorithm is 𝑂 (𝑛 · 𝑁 2).

3.7.2 Minimum Cover Set. In Algo. 2, the size of set collection 𝑆 equals the number of full path
number. In each iteration, algorithm traverse all elements in 𝑆 , and there are at most |𝑆 | iterations.
So, for a tree 𝑇 , it requires at most |𝑆 |2 operations to find the minimum cover set. The time to
calculate the minimum cover set for all trees in Γ is:

𝑇 (Minimum Cover Set) =
∑︁
𝑇 ∈Γ
|𝑇 .𝑃𝑓 |2 ≤

∑︁
𝑇 ∈Γ
|𝑇 .𝑉 |2 ≤ (

∑︁
𝑇 ∈Γ
|𝑇 .𝑉 |)2 = 𝑁 2 (5)

So the time complexity of minimum cover set algorithm is 𝑂 (𝑁 2).
In conclusion, the overall tree processing algorithm has 𝑂 (𝑛 · 𝑁 2) worst-case time complexity,

where 𝑛 is the number of tree, and 𝑁 is the total number of vertex of all trees.

4 IMPLEMENTATION
We implement our algorithm into a Chrome extension named PTV. Fig. 5 shows the workflow of
PTV library feature generation. For a library, first, we use PTdetector to generate the pTree for
each of its versions. Inner dependency and outer dependency of each version are required as input
to PTdetector to eliminate the dependency impact5. Outer dependency can be easily fetched on
libraries’ official sites, while inner dependency can only be inferred by reading library raw code,
5More discussion about inner dependency and outer dependency refers to [Liu and Ziarek 2023] Sec.III.C.(1).
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which is time-consuming. However, for the version detection usage, inner dependencies will not
only have no impact on the accuracy of the detection, but will also provide more information
to allow us to differentiate versions. So, for each version of a library, we only provide its outer
dependency information. In addition, we made some modifications to the pTree generation process.
In the pTree generated by PTdetector, the vertex of the “array/set/map” type is stored with the
number of elements as the value to avoid large trees. Since this strategy does not consider the
actual elements of the data structure it represents it does not provide effective differentiation of
such type of vertices. To account for the values stored in such data structures in the pTree, we
modify PTdetector to use the MD5 checksum value of JSON stringified “array/set/map” variable
as the vertex value.

Fig. 5. PTV library version feature generation workflow.

Once we have the pTree for each version of each library we calculate the equivalence class of
pTrees. When an isomorphisms exist between pTrees in large numbers, prioritizing the computation
of equivalence classes can effectively decrease the values of 𝑛 and 𝑁 in the𝑂 (𝑛 · 𝑁 2) complexity of
the path coloring algorithm (Algo. 2). Prior work [Jayapaul et al. 2015] shows that at most 𝑛2/𝑚 +𝑛
equality comparisons are sufficient to find all equivalence classes for 𝑛 elements, where𝑚 is the
largest size among all equivalence classes. Using their algorithm, we can shrink 𝑛 pTrees to 𝑘
unique pTrees (𝑘 ≤ 𝑛). Then we apply our algorithms in Sec. 3.4 and Sec. 3.5 to generate 𝑘 minified
pTrees (unique subtrees) and their minimum supertree sets. We then save them in a local file for
detection. The original pTree of the library’s latest version will be also stored.
PTdetector is implemented as a Chrome extension that identifies libraries in the browser at

runtime. We modify its detection process to enable version detection as given in Fig. 6. For a target
web page, PTdetector will make use of libraries’ latest version pTrees to identify loaded libraries
and their root locations X in the browser runtime pTree. Then we apply Algo. 6 using minified
pTrees and their minimum supertree sets information to identify the specific library version. Here
the detect object tree 𝜙 in Algo. 6 is the pTree rooted at X.

Fig. 6. PTV library version detection workflow.

5 EVALUATION
In this section, we evaluate the detection ability of PTV by answering four research questions.
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5.1 Experiment Setup
In our experiment, we choose the most widely-used open-source web detector LDC as our baseline.
To date, LDC can detect 125 libraries, and 83 of them have version detection information. Among
125 libraries, we selected 75 libraries with files mounted on Cdnjs, and excluded three frameworks
– React, Vue, and Preact. As explained in the PTdetector paper, the code of these frameworks
mounted on CDN is commonly their runtime debugging tool, which is optional to load. As a
result, PTdetector has unsatisfactory detection on these frameworks, and it’s meaningless to
consider them in our experiment. For the libraries that are left, we manually investigate the outer
dependencies for each version. Some libraries fail to load due to not being designed to run on the
web client side, and some due to missing unknown dependencies. This leaves us with a set of 64
libraries that successfully run on our trivial local website, containing 3,664 versions in total. This
set of libraries and all of their versions will be the dataset for our experiments.
All the experiments are conducted on macOS Sonoma (V 14.1.1) with an Apple M1 chip and

8G memory. All the web pages are opened on Chrome 118.0.5993.88 (Official Build) (arm64). This
configuration is close to how everyday users use the browser and will represent realistic numbers
of our tool "in the wild".

5.2 RQ1: How well is the minification of PTV?
We take these 64 libraries as our experiment target and generate a pTree for each version of them.
For each pTree we set the depth limit as four and the size 6 limit as 1000 7. Our result shows that
the average size of generated pTrees is 354 so a limit of 1000 is reasonable. After applying PTV, we
generate minified pTrees for every library, with the average size of pTree as 3.4. The total size of
detection required pTrees for 64 libraries is reduced from 1,256,094 to 8,404. Our algorithm reduces
the memory footprint by 99.33% without affecting the detection accuracy (as will be shown in
subsequent RQs).

On average, 8B space is required to store one pTree vertex in zipped JSON format. After minifi-
cation, if one needs to realize the version detection on all libraries recorded on Cdnjs, it expects at
most 2, 509, 859 × 3.4 × 8𝐵 = 65.45𝑀𝐵 space to store all version classification features. The space to
store the S𝑚 of each minified pTree is negligible – less than 1% pTrees have nonempty S𝑚 according
to our experiment.

RQ1 Conclusion: PTV greatly reduces the size of the version pTree (99.33%), thus making
pTree-based version detection possible. 65 MB is sufficient for all libraries on Cdnjs.

5.3 RQ2: Is the result of PTV sound?
5.3.1 Minified pTree Pattern. After manually analyzing minified pTrees produced from our dataset,
we observe that it is a common practice for web library developers to store the version information
in a specific property. For example, all jQuery versions store the version as a string value in the
“window.jq.fn.jquery” property. So library detectors could determine the existence and version
of jQuery by checking the value of this property during web runtime. We call such property
containing version-related information as the version label, and the library version with version
label as explicit-labeled.

For the explicit-labeled library version, the generated minified pTree will normally be the exact
path of this property containing version information, because the version value is unique among
6Size refers to the number of vertices in a tree.
7It is not hard to infer that when every pTree of one library is trimmed based on the same depth limit, all the properties of
the minification still hold. However, this is not true for the size limit trimming. In practice, we need a size limit to avoid
extreme cases.
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versions. Sometimes such a property will be given a different name, such as “release” or “build”,
and their locations vary from library to library. But it is easy to find such version storage patterns
for each library by using our tool. Among 64 libraries, we found 33 of them have all versions
explicit-labeled, 14 of them have some versions explicit-labeled, and others have no labeled version.
We observed that many libraries don’t contain version information in the initial versions, but
add one when more versions are developed. Table 2 shows the list of libraries under these three
categories. The value in the parentheses for libraries belonging to the second category is the
percentage of explicit-labeled versions.

Table 2. Categorization of all libraries in our dataset based on explicit-labeled feature.

Category Number Libraries

Fully
explicit-labeled 33

Backbone, D3, Dojo, Ext JS, Highcharts, InfoVis, jQuery, Qooxdoo,
jQuery Tools, jQuery UI, Mapbox, Moment.js, MooTools,
Prototype, RequireJS, Sammy, Underscore, Leaflet, three.js,
Lo-Dash, Numeral.js, DC.js, Paper.js, Mustache, Moment Timezone,
Pixi.js, Sea.js, Two, knockout, Fabric.js, Handlebars, Modernizr

Partly
explicit-labeled 14

Rapha&euml;l (97%), YUI 3 (91.3%), FlotCharts (89%),
Handsontable (80%), CamanJS (72%), Riot (70%), Matter.js (68%),
core-js (67%), Processing.js (61%), jQuery Mobile (60%),
FuseJS (54%), Socket.IO (25%), Pusher (25%), Velocity (10%)

None
explicit-labeled 17

AmplifyJS, FlexSlider, FuseJS, SPF, IfVisible.js,
Material Design Lite, FastClick, Isotope, yepnope, Tween.js, LABjs,
Closure Library, Zepto.js, Head JS, Matter.js, Visibility.js

There are also cases where one library has more than one version storage pattern. Core-js is
such an example. Core-js is the most popular library that provides polyfills for JavaScript, which
allows modern code to run in old browsers. Core-js has over 200 versions. Before 1.2.0, there
is no property storing the version information. Since 1.2.0, the version string can be found in
“window.core.version”. But from 3.10.0, “window.core” is replaced by “window.
__core-js_shared__”, and all version information is stored in a list instead of in a string variable.

5.3.2 Soundness. Confirming whether the detectors are capable of giving correct detection results
is crucial, both for identifying the library as well as the specific version of the library. To test this,
we set up an empty local web page to load each version of each library in the dataset sequentially
and record the detection results of PTV and LDC on the web page. The detection result is normally
a range instead of a single version. We use V𝑥 to represent the set of all versions for a given library
𝑥 . Then we can use the function 𝑑𝑥 : V𝑥 → P(V𝑥 ) to denote the detection mapping relationship
of the detector on library 𝑥 . The domain of 𝑑𝑥 is all the versions of library 𝑥 we provided in the
testing web server, and 𝑑𝑥 (𝑣) is a set of versions, denoting the detection result on version 𝑣 ∈ V𝑥
of library 𝑥 .
Using the detection results in our experiment, we can build the detection mapping 𝑑 for both

detectors. We specify for any 𝑣 ∈ V𝑥 , when the detection result is “unknown” for the version but
the library is correctly identified, in this case 𝑑 (𝑣) should be V𝑥 , i.e., all versions may be true. When
the library fails to be detected, 𝑑 (𝑣) should be ∅. To illustrate, suppose there are five versions of
core-js in our experiment dataset – “2.7.0”, “2.8.0”, “2.9.0”, “3.0.0”, and “3.1.0”. Table 3 presents the
value of 𝑑𝑐𝑜𝑟𝑒− 𝑗𝑠 (𝑣) under different results.

We say a detection 𝑑𝑥 is a sound mapping on version 𝑣 if 𝑣 ∈ 𝑑𝑥 (𝑣). Based on our definition,
detection 𝑑𝑐𝑜𝑟𝑒− 𝑗𝑠 is sound on versions “2.8.0”, “2.9.0”, and “3.0.0”. According to the algorithm in
Sec. 3, for any version 𝑣 , PTV’s detection 𝑑 (𝑣) = [𝑣]. Since, 𝑣 ∈ [𝑣], the detection result provided by

15



Xinyue et al.

Table 3. An example to show how to build 𝑑 (𝑣) based on the detection results.

core-js version 𝑣 detection result of LDC 𝑑𝑐𝑜𝑟𝑒− 𝑗𝑠 (𝑣) of LDC
2.7.0 library not detected ∅
2.8.0 unknown version {2.7.0, 2.8.0, 2.9.0, 3.0.0, 3.1.0}
2.9.0 2.9.0 {2.9.0}
3.0.0 ≥ 3.0.0 {3.0.0, 3.1.0}
3.1.0 < 3.0.0 {2.7.0, 2.8.0, 2.9.0}

PTV is guaranteed to be sound. This conclusion is also well supported by our experimental results
shown in subsequent RQs.

However, the situation is quite different when comes to LDC. Unexpectedly, we find that among
47 libraries with version information, 23 of them contain unsound mappings by LDC. We speculate
one common reason is that the library developers forget to update the version property in a newer
version. For instance, the value stored in the “window.core.version” of the core-js v1.2.7 is “1.2.6”,
a version ahead of the correct one. It is not uncommon that several continuous versions share the
same version label. We call the explicit-labeled version that is assigned with a false version label
the mislabeled version. Among the total 2,710 explicit-labeled library versions, we find 151 (5.6%)
of them are mislabeled.

Themislabeling can lead to unsoundmappings for detectors that naively read version information
directly from these properties. We counted the unsound mappings by LDC for each library and
show them in Fig. 7. Among 23 libraries containing unsound mappings, most libraries have less than
ten unsound mappings, while library “YUI 3” and “FlotCharts” have rather high unsound mappings
– 37 and 40 respectively. Upon manual inspection, the version management of both libraries is quite
chaotic – more than half of the versions are stored with incorrect version information. Unsound
detections in LDC vary from small libraries with less than 4k Github stars – “Rapha&euml;l”,
“Moment Timezone”, “Processing.js”, to popular and well-maintained libraries with more than 40k
Github stars – “Lo-Dash”, “Socket.IO”, “Pixi.js”. One conclusion is that incorrectly labeled version
information is common among web libraries, and determining the version by reading the version
property is not as reliable as we may think.

Fig. 7. The unsound detection mapping number of 23 libraries by LDC.

RQ2 Conclusion: PTV is guaranteed to be sound, while LDC is not. Among 47 libraries
with version labels, 23 of them have unsound detection results using LDC due to version
mislabeling by developers.
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5.4 RQ3: How accurate is the classification ability of PTV?
To answer this question, we propose a new concept called fineness to quantify the completeness of
detectors. Fineness is defined by the following equation.

𝑓 𝑖𝑛𝑒𝑛𝑒𝑠𝑠 =
|{𝑑𝑥 (𝑢) | 𝑢 ∈ 𝑑𝑥 (𝑢)}| − |{𝑑𝑥 (𝑣) | 𝑣 ∉ 𝑑𝑥 (𝑣)}|

|V𝑥 |
(6)

Fig. 8. CDF comparison of two detectors on

64 libraries.

Fineness is designed to characterize the classification
ability of the detector on one library under the sound
requirement – for all versions in a library, the more
classes the detector soundly divides, then the larger the
fineness. Intuitively, fineness is a measure of precision
both in terms of accurately detection the library, but
also correctly identifying the version. The numerator
of Eq.(6) calculates the difference value between sizes
of the sound detection and unsound detection. And
the denominator is the number of versions of library
𝑥 . The value of fineness ranges from -1 to 1. In the
best case, ∀ 𝑣 ∈ V𝑥 , 𝑑𝑥 (𝑣) = {𝑣}, then 𝑓 𝑖𝑛𝑒𝑛𝑒𝑠𝑠 = 1.
When all versions are classified into the “unknown”
class, 𝑓 𝑖𝑛𝑒𝑛𝑒𝑠𝑠 = 1/|V𝑥 |, i.e., correct but imprecise. In
the worst case, unsound classification number is larger
than the sound number, then 𝑓 𝑖𝑛𝑒𝑛𝑒𝑠𝑠 < 0. For a given
library, we use the mark 𝐹 (𝑃𝑇𝑉 ) to represent the fineness of PTV on this library, and the mark
𝐹 (𝐿𝐷𝐶) to represent the similar of LDC.

Fig. 8 shows the cumulative distribution function (CDF) plot of 𝐹 (𝑃𝑇𝑉 ) and 𝐹 (𝐿𝐷𝐶) on our full
dataset. The CDF illustrates what percent of the total number of libraries whose fineness is equal to
or less than a given value. Both 𝐹 (𝑃𝑇𝑉 ) and 𝐹 (𝐿𝐷𝐶) are positive on all libraries. In general, PTV
has a higher fineness in the higher value range compared with LDC.

Fig. 9. Fineness CDF on (a) fully explicitly-labeled, (b) partly explicitly-labeled, and (c) not labeled libraries.

Fig. 9 uses CDF plots to compare the fineness of detectors under three categories of libraries.
For the fully explicitly-labeled libraries group, shown in Fig. 9 (a), both curves rise shapely when
fineness reaches 0.9. For fully explicitly-labeled libraries, PTV can effectively find the location
of the label property, and utilize the label path as the minified pTree. However, there are still 13
out of 33 libraries for which 𝐹 (𝑃𝑇𝑉 ) is less than 1.0. This occurs because multiple versions have
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identical pTrees, which cannot be distinguished using pTree-based methods. This is usually seen
with successive minor version updates, where changes are limited to logical changes – no variables
are added or removed, and no runtime values of the variables are changed. When this occurs the
pTrees between these minor versions are identical. For fully explicit-labeled libraries, having the
same pTree for different versions means that the version label in the tree hasn’t changed. This
occurs for two reasons. First, some sub-versions are labeled with the same major version name. For
example, “1.27.0a” and “1.27.0b” will both be labeled as “1.27.0”. Second, some versions are simply
mislabeled as we discussed in Sec. 5.3. Even for mislabeled versions, PTV can achieve a higher
fineness than LDC.

Fig. 10. Fineness distribution of PTV and LDC on (a) fully explicitly-labeled, (b) partly explicitly-labeled, and

(c) not labeled libraries.

Fig. 11. Time overhead of PTV.

We show the fineness distribution on fully
explicitly-labeled libraries in the box plot Fig. 10
(a). There is one outlier with a very low fineness
of PTV – “three.js” whose fineness equals 0.56.
“Three.js” is a JavaScript 3D libraries with 248
versions. In Cdnjs repository, most “Three.js”
versions have corresponding R versions, like
“107” and “R107”, “108” and “R108”, etc.. After
manual inspection, we find that the contents
in these pairs are identical, the letter R is just
to differentiate the library release location. Ver-
sions without R are released on the “Three.js”
official website, and R versions are released
on its GitHub page. As a result, our tool can-
not classify R versions, which leads to a low
𝐹 (𝑃𝑇𝑉 ). There are four outliers in the LDC
group – “Handlebars” (0.72), “three.js” (0.54), “Hammer.js” (0.31), and “Qooxdoo” (0.07). The “Han-
dlebars” library has a relatively large number of mislabeled versions. The “three.js” library’s R
versions are also difficult for LDC to identify. The “Hammer.js” library has changed its version
label location since the 2.0.0 release and LDC’s heuristics do not consider versions before 2.0.0.
The situation is more interesting in the case of “Qooxdoo”. “Qooxdoo” has a comprehensive and
correct version labeling, but LDC fails to find the labeling location since it is too deep in the runtime
variable structure of the library, and thus loses the ability to identify the version of this library.
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LDC is effective in recognizing explicit-labeled versions, but not for partly explicitly-labeled
libraries. Therefore, a clear gap between 𝐹 (𝑃𝑇𝑉 ) and 𝐹 (𝐿𝐷𝐶) can be seen in the Fig. 9 (b) and Fig. 10
(b). For not explicitly-labeled libraries, LDC cannot detect the version and gives an “unknown”
result for every version. So, 𝐹 (𝐿𝐷𝐶) = 1/|𝑉 |. PTV has a better classification ability for unlabeled
versions given in Fig. 9 (c) and Fig. 10 (c), with an average fineness of 0.38, which is higher than
the LDC’s 0.11. Intuitively, PTV is able to divide every ten none-explicit-labeled versions into four
groups on average.
Moreover, we calculate the difference of fineness of two detectors, i.e., 𝐹 (𝑃𝑇𝑉 ) − 𝐹 (𝐿𝐷𝐶). The

results show the average value is 0.13. 𝐹 (𝑃𝑇𝑉 ) − 𝐹 (𝐿𝐷𝐶) = 0 for 18 libraries; for other libraries,
𝐹 (𝑃𝑇𝑉 ) − 𝐹 (𝐿𝐷𝐶) > 0, which means that for each library, the classification ability of PTV will not
be less than that of LDC.

RQ3 Conclusion: PTV outperforms LDC in terms of fineness frequency distribution on 64
libraries. For each library, the classification ability of PTV will not be less than that of LDC.

5.5 RQ4: What’s the time overhead of pTree minification PTV?
Table 4 shows the time overhead breakdown of each algorithm stage during the pTree processing.
In total, generating minified pTrees and their minified supertree sets for 64 libraries takes 1260.3
seconds. The path coloring stage takes up the vast majority of the time (96.66%), and the equivalence
class calculation stage takes only 2.89% of the time.

Table 4. Time overhead statistics.

Equivalence Path Coloring Get S Min Set Cover Get 𝑇𝑚 Get S𝑚 Total

Refer [Jayapaul et al. 2015]
Theorem 1

Algo. 1
line 2

Algo. 1
line 3

Algo. 1
line 4-5

Algo. 1
line 6 Algo. 5 -

Time 36.5 s 1218.2 s 1.2 s 0.4 s 0.03 s 3.0 ms 1260.3 s
avg. Time 0.6 s 19.0 s 23.1 ms 5.6 ms 0.4 ms 0.04 ms 19.7 s
Percentage 2.89% 96.66% 0.10% 0.03% <0.01% <0.01% 100%

Fig. 11 shows the relationship between the overhead of each library with respect to 𝑛 · 𝑁
in the form of a scatter plot, where 𝑛 is the number of versions, and 𝑁 is the total number of
vertices of generated pTrees. Most of the points in the plot are distributed around the straight line
𝑇𝑖𝑚𝑒 = 𝑛 · 𝑁 /270000. There is only one library that does not adhere to this linear trend – “D3”,
whose 𝑛 · 𝑁 is close to “three.js”, but has a high time overhead of 814 seconds. This is the only
library whose runtime complexity is exponential.

RQ4 Conclusion: Although the worst-case time complexity for pTree processing is𝑂 (𝑛 ·𝑁 2),
the time overhead in practice is close to Θ(𝑛 · 𝑁 ).

6 RELATED STUDY
Forest Algorithm. Trees and forests have been extensively studied. Prior work mainly focus on

mining frequent subtrees from databases of labeled trees. To the best of our knowledge, we are
first to focus on the problem of finding the unique structure of each tree in the forest and apply
it to a real-world detection task. Here we list some key prior works. [Zaki 2002] developed the
TreeMiner algorithm for mining frequent ordered embedded subtrees. [Asai et al. 2004] proposed
the FREQT algorithm, which uses an extension-only approach to find all frequent induced subtrees
in a database of one or more rooted ordered trees. [Asai et al. 2003; Nakano and Uno 2003] extended
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to general case that siblings may have the same labels. [Wang and Liu 1998; Xiao and Yao 2003]
first applied path join approach to the mining. [Chi et al. 2003] introduced the FreeTreeMiner which
applies mining to labeled free trees, which is extended by [Rückert and Kramer 2004]. [Chi et al.
2005] gave a systematic overview of works in this field.

Library Detection. Library detection aims to find the code reuse in software. PTdetector is the
first tool proposed for web applications. Prior to it, many approaches have been proposed to detect
third-party libraries for desktop and Android applications. The common strategy is extracting
features from the source code and matching the binary program library. Binary Analysis Tool
(BAT) [Hemel et al. 2011] is a representative binary matching method that utilizes constant values as
the detection feature. OSSPolice [Duan et al. 2017] introduces a hierarchical indexing scheme to use
better the constant information and the sources’ directory tree. Then BCFinder [Tang et al. 2018]
makes the indexing lightweight and the detection platform-independent. B2SFinder [Yuan et al.
2019] synthesizes both constant and control-flow features from binary based on their importance-
weighting methods to achieve reliable results. Xian Zhan et al. [Zhan et al. 2020] conducted the first
empirical study on Android library detection techniques and proposed tool selection suggestions.

WebLibraryAnalysis.Many different kinds of library analysis works have been done. [Feldthaus
and Møller 2014] present a pragmatic approach to check the correctness of TypeScript files with
respect to JavaScript library implementations. [Kristensen and Møller 2019] explore the concept of
a reasonably-most general client and introduce a new static analysis tool for TypeScript verification.
[Patra et al. 2018] present an automated method to detect JavaScript libraries’ conflicts and show
that one out of four libraries is potentially conflicting. [Møller et al. 2020] develop the tool Tapir
that finds the relevant locations in the client code to help clients adapt their code to the breaking
changes. [Wyss et al. 2022] propose a tool to programmatically detect hidden clones in npm and
match them to their source packages. Their tool utilizes a directory tree as a detection feature,
which does not apply to the front-end library.

7 DISCUSSION AND CONCLUSION
To enable pTree-based JavaScript library version detection, this paper introduces an algorithm to
extract unique feature out of each tree in the forest of pTrees, one for each version. This significantly
reduces the space required for version detection. However, the algorithm proposed in this paper
is not limited to library version detection; in fact, this algorithm will be a handy tool for any
detection problem whose feature can be represented as a tree structure. Compared to widely-used
machine-learning-based detection methods, our algorithm provides more fine-grained 8 detection
and the extracted feature information is human-readable, which can help developers gain insight
into the unique feature patterns of each tree.
Although PTV shows satisfactory performance on minification and detection, there still exist

limitations. The first limitation is extensibility. JavaScript libraries are constantly updated. When a
new version is developed, the minified pTrees of the whole library need to be recalculated. Another
limitation is that the detection result of PTV is only sound when the detection dataset is a subset
of the tree processing dataset. In other words, if a library version on the web page is not collected
during the pTree generation stage, then PTV may produce unsound results. Thus, using our tool
requires a comprehensive collection of all versions of a library.
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