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While mixed integer linear programming (MILP) solvers are routinely used to solve a wide range of important

science and engineering problems, it remains a challenging task for end users to write correct and e�cient

MILP constraints, especially for problems speci�ed using the inherently non-linear Boolean logic operations.

To overcome this challenge, we propose a syntax guided synthesis (SyGuS) method capable of generating

high-quality MILP constraints from the speci�cations expressed using arbitrary combinations of Boolean

logic operations. At the center of our method is an extensible domain speci�cation language (DSL) whose

expressiveness may be improved by adding new integer variables as decision variables, together with an

iterative procedure for synthesizing linear constraints from non-linear Boolean logic operations using these

integer variables. To make the synthesis method e�cient, we also propose an over-approximation technique for

soundly proving the correctness of the synthesized linear constraints, and an under-approximation technique

for safely pruning away the incorrect constraints. We have implemented and evaluated the method on a

wide range of benchmark speci�cations from statistics, machine learning, and data science applications. The

experimental results show that the method is e�cient in handling these benchmarks, and the quality of the

synthesized MILP constraints is close to, or higher than, that of manually-written constraints in terms of both

compactness and solving time.
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1 INTRODUCTION

Many important science and engineering problems may be formulated as mixed integer linear pro-
gramming (MILP) problems and then solved using o�-the-shelf MILP solvers such as Gurobi [Bixby
2007]. Here, the word “mixed” means that the variables appearing in these linear constraints and
the objective function are of either integer or real type, where the integer variables are often used to
model binary decisions. Thus, MILP constraints are capable of expressing a wide range of decision
problems and optimization problems, including binary classi�cation, path planning in dynamical
and partially known systems, and provisioning long-haul network capacity in cloud services. In
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Fig. 1. SynMio – our method for synthesizing the MILP constraintk from the SMT specification q .

addition, with the rapid advance in the runtime performance of modern MILP solvers, they are also
increasingly used in statistics, machine learning, and data science applications.

However, writing correct and e�cient MILP constraints remains a challenging task [Aghaei et al.
2019; Bertsimas and Dunn 2017; Chang et al. 2012; Chang 2012; Paulsen and Wang 2022a,b; Wang
et al. 2022], for two reasons. First, many problems cannot be directly expressed using a conjunction
of linear integer and real arithmetic constraints. Instead, they require the use of Boolean variables,
together with Boolean logic operations such as AND (∧), OR (∨), and Implication (→) between
the constraints. In the context of MILP, these Boolean logic operations are non-linear operations.
Since the decision variant of MILP is NP-complete, which has the same complexity as Boolean
satis�ability (SAT), it is possible to model Boolean variables using integer variables (with 0 and
1 values) and model Boolean logic operations using linear arithmetic constraints. However, in
practice, the modeling process is labor intensive and error prone. Second, when domain experts
write MILP constraints, they often do not use the objective function as is; instead, they use heuristic
simpli�cations or convex proxies to replace the exact objective function with an alternative, easier-
to-solve objective function. However, this kind of manual optimization is challenging for end
users.
To overcome the aforementioned limitations, we propose a solver-independent and generally-

applicable method to automate the process of transforming speci�cations with Boolean logic
operations to correct, e�cient and robust MILP constraints that can be solved using any MILP solver.
By generally-applicable, we mean the method works for arbitrary combinations of Boolean logic
operations. Fig. 1 shows the overall �ow. The input of our method is a speci�cation q expressed in
the LIA/LRA fragments of the SMT-LIB format. Here, LIA stands for linear integer arithmetic while
LRA stands for linear real arithmetic; thus, q consists of both linear arithmetic constraints and
Boolean logic operations. The output is a constraintk in the MILP format; that is,k is a conjunction
of linear integer/real arithmetic constraints.

Internally, our method uses syntax guided synthesis (SyGuS) [Alur et al. 2013], which relies on a
domain speci�cation language (DSL) to de�ne the search space fork , and enumerative search to
explore the candidates fork that are equivalent to q . While we can �x the set of grammar rules of
the DSL, denoted D, the set of variables cannot be �xed a priori. Thus, we propose to iteratively
strengthen the DSL. This is accomplished by starting from an initial DSL under whichk may be
unrealizable, and strengthening it untilk becomes realizable. Strengthening is accomplished by
adding new decision variables, which e�ectively decompose the input speci�cation q and improve
the expressiveness of D. We leverage the counterexamples (CEX) generated by both the realizability
checking step and the veri�cation subroutine as feedback, to decide which new variables to add, to
maximize the improvement in each re�nement step.
Given a su�ciently expressive DSL, there are still two challenges in synthesizing the MILP

constraintk . First, due to the large search space, there may be too many candidates, each of which
must be checked to see if it is equivalent to q . Second, verifying the equivalence of q andk may be
time-consuming. To overcome these challenges, we propose an under-approximation technique to
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quickly falsify the equivalence ofk and q , and then use the result to prune the search space. The
under-approximation is to reduce integer variables to small bit-vectors. This drastically speeds up
the falsi�cation subroutine of SyGuS. We also propose an over-approximation technique to soundly
verify the equivalence ofk and q . Since the goal of veri�cation is to prove the equivalence of q and
k for any data element, rather than solving the optimization problem encoded byk over concrete
data elements, we over-approximate the equivalence veri�cation by rewriting complex operations
ink and q as uninterpreted functions (UF) and then connecting them using high-level relations.

Sometimes, there may be multiple candidates fork , all of which are equivalent to the speci�cation
q , and yet some are signi�cantly easier to solve than others. In such a case, it is important for
our method to choose the most e�cient candidate. Consider the speci�cation (G8 = 0 → G11 =

0) ∧ (G8 = 0 → G17 = 0) as an example of q , where 0 ≤ G7, G8, G11 ≤ 1, and G7, G8, G11 ∈ Z. The
two candidates may be k : G11 + G17 ≤ 2G8 and k

′ : G11 ≤ G8 ∧ G17 ≤ G8. While both of them are
equivalent to q , our experience with modern MILP solvers shows thatk is signi�cantly easier to
solve. This is due to the fact that, while both correspond to the same discrete set F of feasible
points, the polyhedra formed by linear relaxations (i.e., relaxing variables ofk andk ′ from integer
to continuous value) are di�erent. The polyhedra fork is signi�cantly closer to the convex hull
of F . To choose the high-quality candidate, we combine our heuristic decomposition of the input
speci�cation q (used to add new variables to the DSL) with a convex-hull based optimization to
allow the relaxation space to get closer to the convex hull. Details of this optimization are presented
in Section 4.
Our method di�ers signi�cantly from existing techniques. Broadly speaking, there are two

lines of related work. One line of work, which is adopted by some MILP solvers, is to provide
limited support for Boolean logic expressions internally. For example, both Gurobi [Bixby 2007] and
CPLEX [CPLEX 2015] can linearize simple Boolean logic expressions by adding indicator variables
and then explicitly branching on these variables. However, this may lead to exponential blowup;
furthermore, since the linearization is solver-dependent, it cannot bene�t other solvers. Another
line of work is on linearizing Boolean logic expressions externally, but only for a restricted syntax.
For example, the Big-" method [Cococcioni and Fiaschi 2021; Glover 1975] adds a large number
for an arti�cial" variable, to ensure that a Boolean logic expression holds whenever a Boolean
indicator variable evaluates to False. However, the" value has a signi�cant and yet unpredictable
impact on performance. Bertsimas et al. [Bertsimas et al. 2021] propose another way to reformulate
simple Boolean logic expressions as convex binary optimization problems; however, it works only
for a restricted syntax. To the best of our knowledge, our method is the �rst solver-independent
and generally-applicable solution.
It is worth pointing out that the decision variant of an MILP problem can be solved using an

SMT solver. However, its performance is not as competitive as MILP solvers. To demonstrate this,
we have conducted an experiment using the Protein Folding example (also explained in Section 2.2).
The state-of-the-art MILP solver, Gurobi [Bixby 2007], solved it in 0.23 seconds, while the state-of-
the-art SMT solver, Z3 [Moura and Bjørner 2008], solved it in 18.27s. Although there have been
e�orts on extending SMT solvers to make them more e�cient in solving both the decision and the
optimization variants of the MILP problem, for example, in [Devriendt et al. 2021] and [King et al.
2014], the performance is still far from being competitive.
We have implemented our method in a tool and evaluated the tool on a diverse set of bench-

marks. They include 38 speci�cations from statistics, machine learning, and data science applica-
tions [CPLEX 2015; Forrester and Greenberg 2008; Williams 2013]. To evaluate the quality of the
synthesized MILP constraints, we have compared them with the MILP constraints manually written
by domain experts. The results show that, in terms of compactness, the synthesized constraints
are similar to the manually-written constraints; and in terms of MILP-solving performance, the
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q

{
q1 : 0 ≥ 0→ 1 =  1

q2 : 0 < 0→ 1 =  2
k 1





0 ≥ <8=� ∗ G

0 ≤ <0G� − (<0G� + 1) ∗ G

1 =  1 + ( 2 −  1) ∗ G

0 ≤ G ≤ 1, G ∈ Z

k 2





k1 : 0 ≥ 0 ∗ G

k2 : 0 ≤ 0 − G ∗ (0 + 1 + 0)

k3 : 1 =  1 + ( 2 −  1) ∗ G

k4 : 0 ≤ G ≤ 1, G ∈ Z

(1)

Fig. 2. An example SMT specification q (le�), the equivalent MILP constraintk1 wri�en by a domain expert

(middle), and the equivalent MILP constraintk2 synthesized by our method (right). Here, G is a new integer

variable (whose value is either 0 or 1), while<8=� and<0G� are constant values.

synthesized constraints are either similar to, or better than, the manually-written constraints.
Speci�cally, our synthesized constraints are able to reduce the MILP-solving time by 9.8% on
average and up to a maximum of 41%. To evaluate the e�ciency of the synthesis tool, we have also
analyzed its execution time, and quanti�ed the impact of individual optimization techniques. Our
experimental results show that the tool is able to synthesize all of the MILP constraints quickly,
and our optimization techniques are e�ective in speeding up the synthesis process.
To summarize, this paper makes the following contributions:

• We propose a solver-independent and generally-applicable method for synthesizing correct,
e�cient and robust MILP constraints from speci�cations with Boolean logic operations.
• We propose an under-approximation technique to prune the search space, and propose an
over-approximation technique to speed up equivalence veri�cation.
• We propose a method for generating high-quality candidates by leveraging a convex-hull
based optimization to decompose the input speci�cation and strengthen the DSL.
• We implement our method and demonstrate its e�ectiveness on 38 statistical modeling
benchmarks with a wide range of Boolean logic operations.

The remainder of this paper is organized as follows. First, we use examples to motivate our work
in Section 2. Then, we present an overview of our method in Section 3. This is followed by the
detailed algorithms for strengthening the DSL in Section 4, generating candidates in Section 5,
verifying equivalence in Section 6, and domain-speci�c optimizations in Section 7. We present the
experimental results in Section 8, the related work in Section 9, and the conclusions in Section 10.

2 MOTIVATION

In this section, we give an overview of our approach using two motivating examples.

2.1 Example 1: From Online Q&A

This example comes from the StackExchange website. The input speci�cation can be expressed
as If 0 ≥ 0 then 1 =  1; else 1 =  2; where 0 and 1 are real-valued variables and  1 and  2
are constants. Given the input speci�cation, it is easy to write down the formula expressed in the
SMT-LIB format, q := q1 ∧ q2, where q1 and q2 are de�ned in Fig. 2 (left).
The four predicates 0 ≥ 0, 0 < 0, 1 =  1 and 1 =  2 in q are linear constraints that can be

normalized to ax ≤ b. The Boolean logic operator→, which stands for “implies”, can be transformed
to elementary Boolean operations; that is, �→ � is equivalent to ¬� ∨ �.
While it is easy for end users to write the SMT speci�cation q , it is a challenging task to

transform q into a correct and e�cient MILP constraint, since MILP does not allow disjunction (∨)
or implication (→), or any combination of Boolean logic operators. Instead, an MILP constraint
must be a conjunction of linear arithmetic constraints.
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Boolean q := ? | q ∧ q Arith Expr 0 := 00 | 0 + 0 | 0 ∗ 0 | 0%0

Atomic Pred ? := 0 ⊙ 0 Input Expr 00 := 2 | E0A |
#»

� | ITE(A ,1,0)

Comparator ⊙ := = | ≤ Array Expr
#»

� := A[0] | A[0] [0]
Bool Relation A := '(E0A, E0A ) | '(E0A,A) | '(A,A)

Fig. 3. Basic DSL for expressing the MILP constraint, where 2 denotes constant, E0A denotes variable and A

denotes array. Both E0A and A are sets of elements extracted from the input SMT specification q .

2.1.1 The MILP Constraintsk 1 andk 2. Fig. 2 shows two equivalent MILP constraints. The one in
the middle, denotedk 1, is written by a domain expert, while the one on the right, denotedk 2, is
synthesized by our method.

Domain experts often adopt the Big-" method from the literature [Cococcioni and Fiaschi 2021;
Glover 1975]. In this running example, G is a newly-added decision variable whose value is restricted
to either 0 or 1, while<8=� and<0G� are two constant values satisfying (<8=� ≤ 0 ∧<8=� <

0 ∧<0G� ≥ 0 ∧<0G� > 0). In other words,<8=� (<0G�) must be a negative (positive) value
smaller (bigger) than all possible values of the variable 0. As such, the approach has two limitations.
First, it requires a priori estimation of the minimal and maximal values of the variable 0, which
may not be easy to do. Second, the quality of the MILP constraint depends on the quality of these
two bounds; loose bounds of<8=� and<0G� will make the MILP constraint di�cult to solve, or
make the solving time unpredictable.

In contrast, our method is able to synthesize a correct, e�cient and robust MILP constraintk 2, as
shown in Fig. 2 (right). Unlike the manually-written constraint, it does not rely on the two constant
values (<8=� and<0G�); thus, there is no need to estimate the minimal and maximal values of the
variable 0. Furthermore, our experience with modern MILP solvers shows thatk 2 is signi�cantly
easier to solve thank 1. In the remainder of this subsection, we will explain, at a high level, how
our method synthesizes the MILP constraintk 2 from the input speci�cation q .

2.1.2 Our Method for Synthesizingk 2. Our method starts by de�ning a domain speci�c language
(DSL), and then strengthens the DSL until it is expressive enough to capture the MILP constraint
k 2 equivalent to the input speci�cation q . During this strengthening process, the set of grammar
rules of the DSL is �xed, while the set of variables of the DSL is expanded.
Fig. 3 shows the grammar rules of the DSL. Each rule maps a type (left-hand side of ":=") to a

set of compatible values (right-hand side of ":="). For instance, the compatible values for atomic
predicate are D[?] = {0 ⊙ 0}, i.e., the linear arithmetic constraints. With the grammar rules �xed,

the expressiveness of the DSL depends on 2 , E0A , A , and
#»

� ; they are the sets of constants, variables,
relations, and arrays, respectively.
In this running example, the set of variables is E0A = {0, 1,  1,  2} initially. With these four

variables, however, the equivalent MILP constraintk 2 is unrealizable. We must add new variables
to the DSL to improve its expressiveness, untilk 2 becomes realizable.
This is accomplished by �rst adding a Boolean indicator variable G , whose value is either True

or False, to replace the predicates (0 ≥ 0) and (0 < 0) in q . We capture the relationship between
0 and G using q3: (0 < 0→ G = True) ∧ (0 ≥ 0→ G = False).

With the addition of this new variable G , we have E0A = {0, 1,  1,  2, G}, which improves the
expressiveness of the DSL. Furthermore, the updated input speci�cation is q = q ′

1
∧ q ′

2
∧ q3, where

q ′
1
and q ′

2
are new versions of q1 and q2 by replacing predicates 0 ≥ 0 and 0 < 0 with G =False

and G =True, respectively.
With the updated DSL D and input speci�cation q , our method checks the realizability of an

equivalent MILP constraint again. This time, the answer becomes yes, and the resultingk 2 is shown
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Fig. 4. The protein folding example.

For each pair of hydrophobic acids 8 and 9 ,

we can match them if:

1 they have an even number of acids between 8 and 9

2 there is exactly one fold between 8 and 9

3 8 and 9 are not contiguous (i.e., 9 > 8 + 1)

Fig. 5. Requirements for protein folding.

in Fig. 2 (right). Whilek 2 contains the product of program variables, it can still be modeled as linear
constraints, since at least one of the two variables in a product is binary (e.g., G ).

To understand why the synthesized MILP constraintk 2 is equivalent to the SMT speci�cation q ,
consider the following two cases:

• When G = 0, we can reducek 2 tok1 : 0 ≥ 0,k2 : 0 ≤ 0, andk3 : 1 =  1.
• When G = 1, we can reducek 2 tok1 : 0 ≥ 0,k2 : 20 ≤ −1, andk3 : 1 =  2.

In both cases, the result is consistent with q1 : 0 ≥ 0→ 1 =  1 and q2 : 0 < 0→ 1 =  2.
The equivalence of q andk 2 holds as long as a precondition Φ≤ (0) holds. That is,

∀0, 1,  1,  2 ∈ R, G ∈ {0, 1}. Φ≤ (0) → q (0, 1,  1,  2, G) = k 2 (0, 1,  1,  2, G) (2)

The precondition Φ≤ (0) is de�ned as 0 < 0 → 0 ≤ −0.5 to remove strict inequality (<) in q2.
Since strict inequality is not supported by the MILP solver, a tolerance value (−0.5) is introduced to
convert 0 < 0 into 0 ≤ −0.5.

One advantage of our method is that the correctness ofk 2 is guaranteed by construction, since
our method returnsk 2 only after it formally proves the equivalence ofk 2 and q . This is in contrast
to the manually-writtenk 1, for which domain experts must manually verify the correctness.

2.2 Example 2: Protein Folding

This is a molecular biology problem [Forrester and Greenberg 2008] where a chain of amino acids
must be folded. Some of the amino acids are hydrophobic (water-hating) while others are hydrophilic
(water-loving). The goal is to maximize the pairing of hydrophobic acids. Fig. 4 shows the folding
in two dimensions, with hydrophobic amino acids marked by blue circles, and the matches marked
by blue dashed lines.
Given a chain of 50 amino acids � = {1, 2, . . . , 50} and the subset of hydrophobic amino acids

� = {2, 4, 5 . . . } ⊂ �, for example, the goal here is to compute the best folding, to maximize the
number of matchings of hydrophobic amino acids. Fig. 5 shows the matching constraints, where
8 ∈ [1, 50] and 9 ∈ [1, 50] are integer variables. Since the third constraint is straightforward, let us

focus on the �rst two constraints 1 2 .
Based on the requirements in Fig. 5, end users will be able write the input speci�cation q =

q1 ∧q2 ∧q3 ∧ . . . shown in Fig. 6 (left). Here, q1 and q2 encode the �rst requirement of Fig. 5, while
q3 encodes the second requirement, meaning that there is only one fold between hydrophobic acids
8 and 9 , if the two hydrophobic acids 8 and 9 match.

2.2.1 Using Boolean Relations. Inside q , Boolean relations such as " (8, 9) and 5 (:) are used to
write the input speci�cation symbolically. This is in contrast to the use of individual Boolean
variables such as "_8_ 9 for all 8 ∈ [0, 50] and 9 ∈ [0, 50]. For example, " (8, 9) = True indicates
that a hydrophobic acid 8 is matched with another hydrophobic acid 9 , for all hydrophobic acids

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.



Synthesizing MILP Constraints for E�icient and Robust Optimization 184:7

q1: " (8, 9) = 1→ (8 + 9 − 1)%2 = 0 k1: (8 + 9 − 1)%2 ≤ 1 −" (8, 9)

q2: " (8, 9) = 1 ∧ : = (8 + 9 − 1)/2→ 5 (:) = 1 k2: G + (8 + 9 − 1)%2 ≤ 1, G + ~ ≤ 1

q3: " (8, 9) = 1→
∑

8≤:′< 9 5 (:
′) = 1 k3: 1 ≤ (8 + 9 − 1)%2 + G + ~, " (8, 9) + G ≤ 5 (:) + 1

q4: G ↔ : = (8 + 9 − 1)/2 k4: (8 + 9 − 1)/2 ≤ : + ~ ∗ (8 + 9 − 1)/2
q5: ~ ↔ G ∧ (8 + 9 − 1)%2 = 0 k5: : ≤ (8 + 9 − 1)/2 + (: + 1) ∗ ~

k6: 5 (:) +" (8, 9) + ~ ≤ 2

Fig. 6. Input specifications are in {q1, q2, q3}, specifications generated by our decomposition procedure are

in {q4, q5}, and the synthesized MILP constraints are in {k1 −k6}.

8 + 1 < 9 ∈ � , while 5 (:) = True holds if and only if a fold occurs between the :-th and (: + 1)-th
amino acids in the chain, where : ∈ �.
One advantage of using Boolean relations in q , as shown in Fig. 6, is that the speci�cation q is

applicable to a chain of amino acids of any length, not just a chain of amino acids of length 50.

2.2.2 Rewriting the Accumulative Operations. Given this input speci�cation q , our method �rst
simpli�esq , and then strengthens the DSL to ensure that the equivalent MILP constraint is realizable,
before synthesizingk . Our simpli�cation focuses on rewriting the accumulative operations such as∑

8∈� and
∧

8∈� using pre-de�ned rewriting rules.
These rewriting rules are derived from the semantics of the accumulative operators. For the

∑
8∈�

operator, there are two rules applicable to this example: '1 :
∑

8∈� 6(8) ↔ 6(8 ′) +
∑

8∈�∧8≠8′ 6(8) and
'2 :

∑
8∈� 6(8) = 0→ 6(8) = 0.

With rule '1, subformula q3 is rewritten as 5 (:) +
∑

8≤:′< 9∧:′≠: 5 (:
′) = 1. Speci�cally, assuming

the LHS of q2 holds (e.g.," (8, 9) = True, : = (8 + 9 − 1)/2), we obtain 5 (:) = 1 from the RHS of q2.
Thus, q3 is rewritten as

∑
8≤:′< 9∧:′≠: 5 (:

′) = 0, implying
∑

8≤:′< 9∧:′≠(8+9−1)/2 5 (:
′) = 0. With rule

'2, q3 is �nally simpli�ed as follows:" (8, 9) ∧ : ′ ≠ (8 + 9 − 1)/2→ 5 (: ′) = 0.

2.2.3 Checking Unrealizability. Next, our method checks if the equivalent MILP constraint k is
realizable using the initial DSL (D). This check is formulated as

Findk ∈ !(D), ∀8, 9, :, " (8, 9), � (:). q (8, 9, :, ", � ) = k (8, 9, :, ", � ) (3)

Here, !(D) represents the set of all possible formulas that can be expressed using the DSL D. For
this example, the result is unrealizable. To make it realizable, we must add new decision variables
to the E0A set of the DSL. This is accomplished by replacing some of the predicates in q with the
new decision variables, until Eq. 3 says realizable. The detailed algorithm for checking realizability
will be presented in Section 4.2.

There may be multiple ways of decomposing q to add new variables. Below is an example.

G ↔ (8 + 9 − 1)%2 = 0 ∧ ~ ↔ : = (8 + 9 − 1)/2 ∧ I ↔ " (8, 9) ∧ ¬~ ∧ I1↔ " (8, 9) ∧ ~ (4)

However, this may introduce too many new variables.
A better way is to introduce only two new variables G and ~, as de�ned in the subformulas q4

and q5. Fig. 6 (right) shows the equivalent MILP constraint synthesized by our method.

3 OUR METHOD

The top-level procedure of our method, SynMio, is presented in Algorithm 1. It takes the SMT
speci�cation q as input and returns the equivalent MILP constraintk as output.

Internally, it �rst identi�es from the input speci�cationq the sets of constants, relations, variables,
and arrays that appear in q . Then, it uses these sets to initialize the DSL D, whose grammar rules
have been de�ned in Fig. 3. It also initializes (� , which will be used to store the set of negative
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Algorithm 1 Our synthesis methodk ← SynMio(q).

1: Let 2, A, E0A and A be the sets of constants, relations, variables, and arrays appeared in speci�cation q

2: D ← InitDsl(2, A, E0A,A)

3: (� ← ∅ ⊲ (� is the set of negative examples

4: do

5: ⟨D, q ⟩ ← EnrichDsl(D, (� , q) ⊲ Strengthen DSL if (� contains evidence thatk is unrealizable

6: do

7: k ← GenCandi(D, (� , q) ⊲ using under-approximation to prune the SyGuS search

8: � ← VerifyEq(q,k ) ⊲ using over-approximation to speed up veri�cation

9: (� ← (� ∪ {� }

10: while � ≠ ∅ ∧ runtime < threshold

11: while � ≠ ∅

12: returnk

examples. Here, a negative example is a set of concrete values for variables in the DSL, to show
k ≠ q . Initially, (� is an empty set.

Inside the �rst loop (Line 4), our method �rst checks if the equivalent MILP constraint k is
realizable. If there is evidence in (� thatk may be unrealizable, the DSL is strengthened until such
negative examples no longer exist. This is done inside the subroutine EnrichDsl, which returns
the strengthened D and the updated q .

While the detailed algorithm of EnrichDSL will be presented in Section 4, here, it su�ces to say
that the realizability-checking procedure is designed to be sound but not necessarily complete, for
e�ciency reasons. That is, when it reports unrealizable, it means the equivalent MILP constraint is
de�nitely unrealizable; however, when it reports unknown, the result is inconclusive. In the latter
case, EnrichDsl returns the current D and q without modi�cation.

With the strengthened DSL, our method goes into the second loop, to generatek using the syntax
guided synthesis (SyGuS) framework. Speci�cally, it uses the subroutine GenCandi to generate a
candidatek , and then uses the subroutine VerifyEq to prove the equivalence ofk and q .

To improve performance, it uses under-approximation inside GenCandi to quickly prune the bad
candidates, and uses over-approximation inside VerifyEq to speed up veri�cation. Any negative
examples generated by these two subroutines will be added to the set (� .

Whenever q andk are proved equivalent, VerifyEq returns an empty set (�), which allows our
method to jump out of the loops and return the synthesized MILP constraintk (Line 12).
If the running time of the inner loop exceeds a prede�ned threshold, then the subroutine

EnrichDsl is used to strengthen the DSL again, using the accumulated negative examples in (� .
In the next three sections, we will present the detailed algorithms inside the three subroutines

EnrichDsl (Sec 4), GenCandi (Sec 5), and VerifyEq (Sec 6).

4 STRENGTHENING THE DSL

In this section, we present the algorithm inside the subroutine EnrichDsl. The pseudo code is
shown in Algorithm 2. The input of this subroutine consists of the DSL D, the negative example set
(� , and the speci�cation q . The output consists of the updated versions of D and q .

Internally, there are three steps. The �rst step, Unrealizable, checks whether the example set
(� contains any evidence to show that an MILP constraint equivalent to q is unrealizable. The
second step, Decomp, strengthens the DSL by decomposing q to replace some of its predicates
with new decision variables; adding these new variables to the E0A set of the DSL will improve its
expressiveness. The third step, ConvexHullSplit, further decomposes q to add more variables.
However, unlike Decomp, the goal here is to increase the chance of generating a high-quality MILP
constraint. In the remainder of this section, we explain these three steps in detail.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.



Synthesizing MILP Constraints for E�icient and Robust Optimization 184:9

Algorithm 2 ⟨D, q⟩ ← EnrichDsl(D, (�, q)

1: while Unrealizable(D, (� , q) do

2: ⟨D, q ⟩ ← Decomp(D, (� , q)

3: end while

4: ⟨D, q ⟩ ← ConvexHullSplit(D, q)

5: return ⟨D, q ⟩

q





q1 : G ≥ 0 ∧ G < 1→ ~ ≤ 10

q2 : G ≥ 1 ∧ G < 2→ ~ ≤ 5

q8 : . . . (up to 10 implications)

q= : G ≥ 10→ ~ ≤ 10

Fig. 7. Specification q for StackExchange 2873.

4.1 Decomposing the Specification

We start with the subroutineDecomp. Instead of showing the pseudo code, which is straightforward,
we illustrate the process using an example. The speci�cation of this example, named StackExchange
2873, is shown in Fig. 7. That is, q = q1 ∧ q2 ∧ ...q8 ∧ ...q= contains a conjunction of subformulas,
each of which may have both linear constraints and Boolean logic operations such as Implication
(→). In our method, each subformula, q8 , is treated as an input, for which an equivalent MILP
constraint is synthesized.

G ≥ 0 ∧ G < 1→ ~ ≤ 10 | q10 : G ≥ 0⇔ F1

F1 ∧ G < 1→ ~ ≤ 10 | q11 : G < 1⇔ F2

F1 ∧F2 → ~ ≤ 10 | q12 : F1 ∧F2 ⇔ I

| q13 : I → ~ ≤ 10

Fig. 8. The decomposed specifications from q1.

q1 : G ≥ 0 ∧ G < 1 → ~ ≤ 10

F1 F2

I
q1

Fig. 9. Decomposing q1.

Consider q1 as our running example, Fig. 9 shows several ways of decomposing the antecedent,
to replace predicates in the set {G ≥ 0 ∧ G < 1, G ≥ 0, G < 1} with new decision variables. For
example, Decomp may introduce a new variable I to replace q1.left() = G ≥ 0 ∧ G < 1. Decomp
may also introduce two more variables F1 and F2 to replace the children of q1 .left() such that
F1 = G ≥ 0 andF2 = G < 1.

After introducing these three new variables, the speci�cation q1 becomes q10 ∧ q11 ∧ q12 ∧ q13 ,
where the subformulas are de�ned in Fig. 8.

Our method will synthesize an equivalent MILP constraint for each of these subformulas. Thus,
the �nal MILP constraint for q1 will be k1 = k10 ∧ k11 ∧ k12 ∧ k13 , where k13 is de�ned as
~ ≤ 10 +, ∗ (1 − I) and the other subformulas are de�ned as follows:

k10

{
, ∗F1 ≥ G + 4?B

, ∗ (1 −F1) ≥ 0 − G
k11

{
, ∗F2 ≥ 1 − G

, ∗ (1 −F2) ≥ G − 1 + 4?B
k12

{
I ≤ F1 ∧ I ≤ F2

F1 +F2 − 1 ≤ I
(5)

Here, , and 4?B are symbolic variables such that , is the largest possible value among all
expressions ink , and 4?B is a small constant used to make the inequality non-strict, similar to the
tolerance value used in in Equation 2. For 4?B , we always add the bound constraint 0 < 4?B < 1.

For, , we �rst extract all the subexpressions (i.e., G + 4?B and 0 − G fromk10) and then impose
the constraint, ≥ G + 4?B ∧, ≥ 0 − G .

4.2 Checking for Unrealizability

Now, we explain the subroutine Unrealizable, which decides whether (� contains any evidence
showing that a q-equivalent MILP constraint is unrealizable. The veri�cation problem is de�ned as
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follows:

Findk ∈ !(D), ∀E0A, A,
#»

�. q (E0A, A,
#»

� ) = k (E0A, A,
#»

� ) (6)

However, this problem is di�cult to solve.
Instead, we leverage the unrealizability veri�cation technique proposed by Hu et al. [Hu et al.

2019, 2020]. The core idea is to reduce the unrealizability proof over all inputs (Eq. 6) to a proof
over the �nite number of examples in (� :

Findk ∈ !(D),
∧

E0A,A,
#»

� ∈(�
q (E0A, A,

#»

� ) = k (E0A, A,
#»

� ) (7)

This is a sound (and not necessarily complete) procedure in that, if it is unrealizable according to
Eq. 7, it is unrealizable according to Eq. 6; however, the reverse is not always true.

This procedure is practically fast, because the set (� of negative examples is �nite, which means
the unrealizability proof of Eq. 7 can be encoded as a reachability problem in a non-deterministic
program %= , as shown by Hu et al. [Hu et al. 2019, 2020]. Each program path in %= models a possible
candidate expression that the DSL D can represent. Furthermore, %= has an assertion (Eq. 8) such
that, if the assertion cannot be falsi�ed, it means the synthesis instance Eq. 7 is unrealizable.

¬
∧

E0A,A,
#»

� ∈(�
q (E0A, A,

#»

� ) = k (E0A, A,
#»

� ) (8)

4.3 Convex-hull Based Spli�ing

Finally, we explain the subroutine ConvexHullSplit. At this moment, the DSL has been strength-
ened such that there is no longer evidence in (� showing that the q-equivalent MILP constraint is
unrealizable. Thus, the goal of adding new variables is not improving the expressiveness; instead,
the goal is improving the quality of the synthesized MILP constraint.
Our method for adding new variables in ConvexHullSplit is inspired by the fact that, within

MILP solvers, the original problem is often reformulated into a more relaxed problem before it is
solved. There are many such reformulations, all of which keep the original part of the solution
space, but may add more solutions to make the solution space convex. In this context, a convex hull
is de�ned as the smallest convex solution space for the relaxed problems [Belotti et al. 2011].
Consider an example whose input speci�cation q is given as follows:

q

{
q1 : : → 5 ≤ G1 ≤ 9 ∧ 0 ≤ G2 ≤ 4

q2 : ¬: → 0 ≤ G1 ≤ 5 ∧ 4 ≤ G2 ≤ 6
k 1





k1 : 5 − 7 ∗ (1 − :) ≤ G1 ≤ 9 + 7 ∗ (1 − :)

k2 : −7 ∗ (1 − :) ≤ G2 ≤ 4 + 7 ∗ (1 − :)

k3 : −7 ∗ : ≤ G1 ≤ 5 + 7 ∗ :

k4 : 4 − 7 ∗ : ≤ G2 ≤ 6 + 7 ∗ :

(9)

The solution space of q is shown as the blue shaded areas in Figure 10a, where G1 is the horizontal
axis and G2 is the vertical axis.
Without adding any new variable, our method will synthesizek 1 as shown in the above Eq. 9.

The solution space of k 1 is shown as the orange region in Figure 10b, which contains the blue
region (actual solution space).

However, this is not a tight relaxation since the orange region over-approximates the blue region
too much. This may lead to a long solving time, because MILP solvers routinely search for a solution
in the relaxation space and then check if it also belongs to the actual solution space. Thus, a smaller
relaxation space (orange) is more likely to reduce the solving time. However, without adding new
variables, it is not possible for our synthesis method to get a tighter relaxation.

The reason is becausek 1 is synthesized from q by treating each of the subformulas (q1 and q2)
in isolation. In other words, the synthesizer fails to capture and then utilize the correlation between

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.



Synthesizing MILP Constraints for E�icient and Robust Optimization 184:11

(a) q (b)k1 (c)k2

Fig. 10. The solution spaces for q , and two possible equivalent MILP constraintsk1 andk2.

them. To see why q1 and q2 are correlated, consider the fact that they are de�ned over the same set
of variables {G1, G2}.
One way to capture the correlation is to split variable G1 into G1: and G1¬: such that G1 =

G1: +G1¬: . If G1: is activated, G1¬: is equivalent to 0 (deactived); and vice versa. ConvexHullSplit
is designed to handle this kind of scenarios, to split each (non-decision) variable to two new
variables such that only one of them can be activated.

For the running example, the E0A set of theDSLwill be augmented by the set {G1: , G1¬: , G2: , G2¬: }
of new variables. With the updated DSL, our method will synthesize the MILP constraintk 2 de�ned
as follows:

k 2





k1 : G1 = G1: + G1¬: ∧ G2 = G2: + G2¬:

k2 : 0 ≤ G1: ∧ 0 ≤ G1¬:

k3 : 5: ≤ G1: ≤ 9: ∧ 0 ≤ G1¬: ≤ 5(1 − :)

k4 : 0 ≤ G2: ≤ 4: ∧ 4(1 − :) ≤ G2¬: ≤ 6(1 − :)

(10)

Figure 10c shows the region of k 2, where the relaxation space (orange) is reduced to the convex
hull of the blue region.
To summarize, the subroutine ConvexHullSplit is designed to introduce new variables by

splitting the existing variables with the goal of capturing the relation between two subformulas q8
and q 9 , where the antecedent of q8 is the negation of the antecedent of q 9 . Our observation is that,
by extracting the correlation between them and make the information available during synthesis,
our method will be able to synthesize high-quality candidates.

5 GENERATING THE MILP CANDIDATES

In this section, we present the algorithm implemented in the subroutine GenCandi, which takes
the DSL (D), the example set ((� ) and the speci�cation (q) as input, and returns a candidate k
as output. The pseudo code is shown in Algorithm 3. The baseline is a counterexample guided
inductive synthesis (CEGIS) procedure [Alur et al. 2013], which enumerates candidates in a search
space de�ned by D and, for each candidate k , checks whether it is equivalent to q . To improve
performance, however, we use under-approximation during the equivalence checking.

5.1 Under-approximation for Search Space Pruning

While variables inq andk are either integer or real-valued variables, we rede�ne them as bit-vectors
during the veri�cation step. By reducing the length of the bit-vectors to 2 or 3, for example, the
veri�cation time will be drastically reduced.
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Algorithm 3 Subroutine for generating candidate:k ← GenCandi(D, (�, q).

1: Φ ← True; 1 ← Init() ;

2: while runtime < threshold do

3: k ← Assemble(D, (� , q,1) ⊲

∧
�∈(�

. Φ(�) → q (�) = k (�)

4: � ← FalsifyBit(q,k,1) ⊲∀�, 0 ≤ � ≤ 21−1 − 1. Φ(�) → q (�) = k (�)

5: if � ≠ ∅ then ⊲ � : counterexample

6: if CheckCex(�,q,k ) then

7: (� ← (� ∪ {� } ⊲ � is a real counterexample – add to (�
8: else

9: Φ ← UpdatePre(Φ,k,1, �) ⊲ � is a bogus counterexample – update precondition Φ

10: end if

11: else

12: returnk

13: end if

14: end while

15: return ∅

Our veri�cation step has three phases, each of which is slower and yet more accurate than the
previous one. In the �rst phase, we check if the equivalence of q andk holds on all examples � ∈ (� .
Since (� is a �nite set, this is captured by Ψ1, de�ned as follows:

Ψ1 (k ) :=
∧

�∈(�
Φ(�) → q (�) = k (�) (11)

Here, q (�) denotes the value of q on the example �, and q (�) = k (�) means q andk are equivalent
for this particular example �.
Φ(�) is the precondition that is necessary to establish the equivalence in this bit-vector domain,

de�ned as Φ(�) = Φ≤ (�) ∧ Φ↑(�). The subformula Φ≤ is used to remove strict inequality as
explained using the example Φ≤ (0) in Equation 2. The subformula Φ↑, on the other hand, accounts
for over�ow/under�ow in the bit-vector domain. Details of Φ↑ will be explained in Section 5.2.

As shown in Line 3 of Algorithm 3, the subroutine Assemble returns the candidate only whenk
and q satisfy Eq. 11.
In the second phase, we check if the equivalence holds for all values in the bit-vector domain;

this is captured by Ψ2, de�ned as follows:

Ψ2 (k ) := ∀�, 0 ≤ � ≤ 21−1 − 1 . Φ(�) → q (�) = k (�) (12)

Here, 1 is the length of the bit-vector. Again, the number of � is �nite. As shown in Line 4 of
Algorithm 3, the subroutine FalsifyBit is used to check Eq. 12.

In the third phase, we check if the equivalence holds in the unbounded integer/real domain Z/R.
Since Φ↑ is no longer needed to account for over�ow and under�ow in the bit-vector domain, the
precondition Φ = Φ≤ ∧ Φ↑ reduces to Φ≤ . This is captured by Ψ3, de�ned as follows:

Ψ3 (k ) := ∀� ∈ Z, �
′ ∈ R . Φ≤ (�, �

′) → q (�, � ′) = k (�, � ′) (13)

The reason why we need the third phase is because, even if Ψ2 (k ) holds, Ψ3 (k ) may not hold. The
third phase is implemented in VerifyEq (used in Algorithm 1), and it will be discussed again in
Section 6.
The three-phase approach presented above is designed to signi�cantly speed up veri�cation,

by quickly falsifying equivalence in smaller domains ((� and [0, 21−1 − 1]) before falsifying in the
unbounded domain. This e�ectively prunes the redundant search space.
The e�ectiveness of pruning is a�ected by the length of bit-vector. In our implementation, we

set the length to 2 initially, and then keep increasing it as long as the equivalence checking is
falsi�ed in the third phase. This can be illustrated using the Decentralized Planning example below.
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E

MILP
Constraint

k

Assemble
FalsifyBit

bit-vector

VerifyEq

integer/real

CheckCex

Candidatek � = ∅ � = ∅

CEX�

1 Update precondition 2 Increase bit-vector length/CEX

Example (�

GenCandi

Fig. 11. The overall flow of the subroutine GenCandi presented in Algorithm 3.

In this example, the input speci�cation q is given as follows, together with the synthesized MILP
constraintk 2:

q




<>E (3, 2, 32, 22) → ;>2 (3, 2)

<>E (3, 2, 32, 22) → ;>2 (32, 22)

;>2 (3, 2) ∧ ;>2 (32, 22) →<>E (3, 2, 32, 22)

k 2




<>E (3, 2, 32, 22) ≤ ;>2 (3, 2)

<>E (3, 2, 32, 22) ≤ ;>2 (32, 22)

;>2 (3, 2) + ;>2 (32, 22) ≤ 1 +<>E (3, 2, 32, 22)

(14)
Here, both ;>2 and<>E are Boolean relations, where ;>2 (3, 2) means a factory 3 is located at a city
2 , and<>E (3, 2, 32, 22) means moving 3 from 2 to 22 and renaming it as 32.

Whilek 2 is the equivalent MILP constraint synthesized by our method, it is not synthesized in
one iteration. Initially, we use length-2 bit-vectors, and GenCandi produces a di�erent candidate
k 1, shown as follows:

<>E (3, 2, 32, 22) + ;>2 (32, 22) +<>E (3, 2, 32, 22) + ;>2 (3, 2) ≤ (#101 + #101 + #101 + #101 + #101)

Here, #101 stands for a bit-vector constant of value 1. While this candidatek 1 satis�es Ψ2 de�ned
in Eq. 12, it does not satisfy Ψ3 de�ned in Eq. 13.
That is why we increase the bit-vector length to 3, and then to 4, which leads to the correct

candidatek 2.

5.2 Defining Preconditions

Recall that in Eq. 11 and Eq. 12, the preconditon Φ↑(�) is used to establish the equivalence in the
bit-vector domain, to account for over�ow and under�ow. For example, the summation of two
bit-vectors of length 2 may create a positive value that is too big, and the over�ow may cause the
value to become negative. Both over�ow and under�ow may lead to incorrect veri�cation results.

Consider the example below, which illustrates the over�ow. The input speci�cation q and the
equivalent MILP constraintk are shown as follows:

q

{
q1 : G > !� → F1 = True

q2 : G ≤ !� → F1 = False
k

{
k1 :, ∗F1 + !� ≥ G

k2 :, ∗ (1 −F1) + G ≥ !� + 4?B
(15)

While k is equivalent to q in the integer and real domains, when we check them in bit-vector
domain, the equivalence may no longer hold.
Thus, FalsifyBit produces a counterexample � = ⟨, = 7, F1 = True, !� = 2, G = 4⟩. While

both q (�) andk (�) evaluate to True, in the length-4 bit-vector domain (signed),k (�) evaluates to
False. This is because 7 is the maximum positive value in this bit-vector domain. Thus, ∗F1+!�,
which is supposed to be 9, becomes −7. As a result, k (�) evaluates to False, thus (mistakenly)
failing Ψ2 de�ned in Eq. 12. The consequence is that the correct candidate is missed.
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To avoid the above scenario, we must add the precondition Φ↑ into Eq. 11 and Eq. 12. Instead of
enforcing constraints on a particular variable, we propose a general constraint to eliminate the
over�ow case of the summation over :-bit domain.
Assuming : = 4, we add to Φ↑, for each arithmetic operation of the form (+ >?1 >?2), the

following constraint: >?1 ≥ 04 ∧ >?2 ≥ 04 → >?1 + >?2 ≥ 04. Similarly, for each (+ E1 E2),
we add the following constraint: E1 ≥ 04 ∧ E2 ≥ 04 → E1 + E2 ≥ 04.

If FalsifyBit generates a counterexample �, it is evident that q (�) = k (�) fails in the bit-vector
domain. However, it remains unclear if � is a valid counterexample in the integer and real domains.
To make sure that � is a real counterexample, inside CheckCex (Line 6 of Algorithm 3), we check
whether q (�) = k (�) fails in the integer and real domains.

Figure 11 shows the details of generating and then validating the counterexample �, before
adding it to the set (� . In addition to FalsifyBit, the counterexample may also be generated by
VerifyEq. In both cases, � is added to (� only when it is con�rmed to be a valid counterexample.

If, on the other hand, � is found to be a spurious counterexample, we identify the arithmetic
operations causing the discrepancy (� being valid in the bit-vector domain but spurious in the
integer/real domain). These arithmetic operations, e.g., (+ >?1 >?2) and (+ E1 E2), will be used
to update the precondition Φ↑, as explained in the paragraphs above.

To summarize, in Algorithm 3, the �rst step, Assemble, produces a candidatek that is equivalent
to q for all the examples � ∈ (� (Eq. 11). The second step, FalsifyBit, further checks the validity
of k in the bit-vector domain (Eq. 12). If k is validated by FalsifyBit, it would be returned for
further checking in VerifyEq (Line 12). Otherwise, a counterexample � is generated. As � is not
guaranteed to be a real counterexample, CheckCex checks the validity of �. Based on the result of
CheckCex, it would be either added to (� (real counterexample) or used to de�ne the precondition
(spurious counterexample).

6 VERIFYING THE EQUIVALENCE

We now present the algorithm implemented in the subroutine VerifyEq, which is used in Algo-
rithm 1 to soundly prove thatk and q are equivalent under the precondition Φ≤ as de�ned in Eq. 13.
This is accomplished by leveraging an o�-the-self SMT solver. However, instead of proving the
validity of

(q ≡ k ) := (q → k ) ∧ (k → q), (16)

we use the SMT solver to check the satis�ability of the negated formula (q . k ), which is equivalent
to (q ∧ ¬k ∨ ¬q ∧k ). We say that k and q are equivalent if and only if the negated formula is
unsatis�able (UNSAT).

However, directly applying the SMT solver to check the UNSAT of the negated formula may still
be costly. As the sizes of q andk increase, the veri�cation time increases rapidly, which prevents
our method from handling larger synthesis problems. To overcome this limitation, we propose to
verify the equivalence of q andk at a higher level of abstraction, i.e., by treating complex arithmetic
operations as uninterpreted functions (UF). This is motivated by the fact that, during equivalent
veri�cation, our goal is to prove the equivalence of q andk , without having to solve these arithmetic
constraints on the potentially large amount of concrete data.

6.1 An Example

To understand the idea of verifying equivalence at a higher level of abstraction, let us revisit the
protein folding example. Recall that, in this example, both q and k are constraints over index
variables such as 8, 9 and : . Neither q nor k refers to the concrete data. Here, the concrete data
refers to the chain of 50 amino acids � = {1, 2, . . . , 50} and the subset of hydrophobic amino acids
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q1: " (8, 9) → � (8, 9) k1: " (8, 9) ≤ � (8, 9)," (8, 9) ≤ ( (8, 9, :)
q2: " (8, 9) ∧ ( (8, 9, :) → 5 (:) k2: G ≤ � (8, 9), G ≤ ( (8, 9, :), � (8, 9) + ( (8, 9, :) ≤ G + 1
q3: " (8, 9) ∧ ¬( (8, 9, :1) → ¬5 (:1) k3: " (8, 9) + G ≤ 5 (:) + 1
q4: G ↔ � (8, 9) ∧ ( (8, 9, :) k4: 5 (:1) +" (8, 9) ≤ 1 + ( (8, 9, :1)

Fig. 12. Abstracted specificationq for protein folding (le�) andk synthesized by ourmethod (right). Arithmetic

operations in q1 − q3 are replaced by UFs, and q4 is created by Decomp to add the new decision variable G .

� = {2, 4, 5, . . .}. As a result, both q andk are valid for arbitrarily long chains of amino acids, not
merely the chain of length 50.
During equivalence veri�cation, we want to keep 8, 9, : as unbounded integers in [1, +∞], as

opposed to integers in a concrete range such as [1, 50]. In other words, the relations de�ned on
these index variables must be kept symbolic.

• � (8, 9): True if (8 + 9 − 1)%2 = 0; False otherwise.
• ( (8, 9, :): True if (8 + 9 − 1)/2 = : ; False otherwise.

During equivalence veri�cation, we replace these symbolic relations as uninterpreted functions
(UFs), to abstract away the correlation between the input (8, 9 ) and the output of � (8, 9), except that
(8 = 8 ′ ∧ 9 = 9 ′) → � (8, 9) = � (8 ′, 9 ′). This is a sound over-approximation in that, as long as we
prove the equivalence of q andk using these UFs, the equivalence of q andk in the integer/real
domain is guaranteed.

Another bene�t of verifying the equivalence at a higher level of abstraction is that our synthesis
method can produce more compact candidates for k , e.g., by replacing the actual arithmetic
computations in q with UFs. Consider the input speci�cation q on the left-hand side of Figure 12,
where the arithmetic computation has been abstracted away. For thisq , the number of new variables
that needs to be added to the E0A set of the DSL will be drastically reduced.

Indeed, after adding one new variable, G , which is shown in q4 on the left-hand side of Figure 12,
our method is able to synthesize the MILP constraintk shown on the right-hand side of Figure 12.
This is signi�cantly simpler than the one shown on the right-hand side of Figure 6.

6.2 Abstracting with Uninterpreted Functions

In our implementation of the subroutine VerifyEq, given the input speci�cation q , we �rst trans-
form q to the conjunctive normal form (CNF), consisting of q1 ∧ q2 ∧ . . . ,∧q= , and then try to
remove the redundant subformulas. For example, if the end user includes another subformula
q5 : ¬� (8, 9) → ¬" (8, 9) in the original speci�cation q , upon detecting that q5 is equivalent to
q1 : " (8, 9) → � (8, 9) and thus is redundant, we will remove it from q .

Then, we use syntactic-level rewriting rules to replace accumulative operations (such as
∑

8∈�

and
∧

8∈� ) with functionally equivalent, non-accumulative operations. This has been explained in
Section 2.2.2, while we introduced the protein folding example.

Next, we start abstracting the arithmetic operations to uninterpreted functions (UF). For example,
in protein folding, the uninterpreted function � (8, 9) is introduced to replace the actual predicate

(8 + 9 − 1)%2 = 0 ? True : False. We also use UF(8, 9 ) to replace the array
#»

� [8] [ 9] for e�cient
veri�cation.

This leads to a sound over-approximation. By sound, we mean that the equivalence of q andk
using these UFs implies the equivalence of q andk in the concrete domain. However, the reverse
is not necessarily true: it is possible that q andk are equivalent, and yet VerifyEq cannot prove
the equivalence. Nevertheless, our experimental evaluation shows that, in practice, VerifyEq is
e�ective in proving equivalence of q andk in most cases.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.



184:16 Jingbo Wang, Aarti Gupta, and Chao Wang

Boolean q := ? | q ∧ q | q= → q Arith Expr ND 0= := 0=
0
| 0= + 0= | 0= ∗ 0= | 0=%0=

Boolean ND q= := ?= | q= ∧ q= Input Expr ND 0=
0

:= 2 | E0A=
Atomic Pred ND ?= := 0= ⊙ 0=

Fig. 13. DSL DC for non-decision (ND) variables, which may occur as the antecedent of the Implication (→)

operator whereas decision variables cannot.

7 OPTIMIZATIONS

While the method presented so far has all the functionalities, we can make it produce a more
compact MILP constraint using a DSL annotated with the type information.

7.1 Type Annotations for the DSL

While the DSL shown in Figure 3 is general enough, individual MILP solvers may have their
own syntactic restrictions, e.g., over the index variables (ND) and decision variables. To speed up
the synthesis using such information, we introduce a variant of the DSL, denoted DC , to capture
user-provided syntactic restrictions. Our method combines DC , which is de�ned in Figure 13, with
the DSL D de�ned in Figure 3, to take these type annotations into consideration.
Figure 3 captures the syntactic restrictions for both ND and decision variables while Figure 13

focuses exclusively on ND variables. In Figure 13, E0A= represents ND variables, the values of which
are decided by the dataset. In contrast, the values of decision variables are decided after the
optimization is �nished. For instance, in the protein folding example, 8, 9 and : are ND variables
while" and � are decision variables.

In Figure 13, each rule maps a type (left-hand side of ":=") to a set of compatible values (right-hand
side of ":="). For instance, the compatible values for Boolean formula are D[q] = {?, q ∧q, q= → q}.
Hereq= represents the Boolean formula consisting of pure ND variables, whichmay be the antecedent
of→ operator, whereas a formula consisting of decision variable is prohibited.

7.2 Leveraging the Type Information

Next, we explain why the combined DSL allows the synthesis procedure to generate a more compact
candidatek . The reason is because, by allowing more operations to be associated with ND variables,
it may prevent some unrealizability cases from happening. As DC relaxes the syntactic restrictions
on ND variables, it enlarges the set of syntactically-valid formulas, which reduces the probability of
being unrealizable. Hence, our synthesizer is able to reduce the newly-created variables and obtain
a more compact solution.

Again, in the protein folding example, type information allows the synthesis method to generate
the following candidate:

¬� (8, 9) → ¬" (8, 9) ∧ � (8, 9) ∧ ( (8, 9, :) → " (8, 9) ≤ 5 (:) ∧ ¬( (8, 9, :1) → 5 (:1) +" (8, 9) ≤ 1

(17)
This is compact and does not rely on any new variables.

8 EXPERIMENTS

We have implemented our method in a software tool (SynMio), which uses Rosette [Torlak and
Bodik 2013] to generate candidates in small bit-vector domain. We choose Rosette over other
synthesis tools, such as cvc4sy [Reynolds et al. 2019] and EUSolver [Alur et al. 2017], since it
directly supports uninterpreted functions as a syntactic construct for syntax-guided synthesis
(SyGuS) [Alur et al. 2013]. Our veri�cation subroutines, FalsifyBit and VerifyEq, are implemented
using the Z3 SMT solver [Moura and Bjørner 2008]. The di�erence is that, while FalsifyBit uses
the bit-vector (BV) domain, VerifyEq uses the linear integer/real arithmetic (LIA/LRA) domain.
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Name Description of the Problem Name Description of the Problem

O1 Protein Folding O15 Continuous If2 NonStrict

O2 Decentralized Planning O16 Continuous If Combine SN

O3 Protein Comparison O17 Continuous If Combine NS

O4 Task Scheduling O18 Continuous If Combine SS

O5 Food Manufacture O19 Continuous If Combine NN

O6 ILOG CPLEX OR Q1-11 StackOver�ow/StackExchange

O7 Cardinality Problem M1 Decision Tree Learning

O8 Minimize Num of Workers M2 Ranking Function-AUC

O9 Tra�c Scheduling M3 Ranking Function-RRF

O10 Warehouse locating M4 Sparse PCA

O11 Factory Production Planning M5 Branch Constraints

O12 Continuous If1 Strict M6 Bipartite Ranking

O13 Continuous If1 NonStrict M7 Best Subset Selection

O14 Continuous If2 Strict M8 Associate Classi�cation

Fig. 14. The list of input specifications1. Fig. 15. The MILP-solving time.

We ran all of our experiments on a computer with 2.9 GHz Intel Core i5 CPU and 64 GB RAM.
Our experiments were designed to answer the following questions:

• What is the quality of the MILP constraints synthesized by our method, measured in terms
of both compactness and the MILP-solving time?
• How e�cient is our method in synthesizing MILP constraints, measured in terms of both the
size of the input speci�cations and the synthesis time?

8.1 Benchmarks

As shown in Fig. 14, our benchmarks include 38 mixed-integer optimization problems speci�ed
using a variety of Boolean logic operations. They come from statistics, machine learning, and data
science applications. Broadly speaking, they fall into three categories. The �rst category ($1 to$19)
are problems from transportation [Fourer 2014], �nancial services, supply network design [Belotti
et al. 2011], and as well as biomedical research [Forrester and Greenberg 2008]. The second category
(&1 to&11) are problems collected from various online Q&A platforms, including the StackExchange
website. Due to di�culties in manually linearizing Boolean logic operations, novice data analysts
frequently seek assistance from domain experts on these platforms. The third category ("1 to"8)
are problems created by researchers who leverage MILP solvers in a variety of machine learning
applications, including ranking [Chang 2012], decision tree learning [Bertsimas and Dunn 2017],
and sparse PCA [Bertsimas et al. 2022].
All of these problems have the corresponding, manually-written MILP constraints. They come

from three sources: online Q&A forums, textbooks, and specialists. These manually-written MILP
constraints serve as a baseline for evaluating the quality of the solutions produced by our method.

8.2 Results: The�ality of Synthesized MILP Constraints

To evaluate the quality of the synthesized MILP constraints, we compared them with the MILP
constraints manually written by domain experts. The results are shown in Table 1. The �rst four
columns show, for each benchmark, the name, the size of the input speci�cation q , the number of
variables in q , and the size of the concrete dataset.

Since input speci�cations may be expressed symbolically using index variables, such as 8, 9 , and
: in the protein folding example, concrete datasets, such as � = {1, 2, . . . , 50} and � = {2, 4, . . .},
must be used to concretize them before giving the �attened formula to MILP solvers. This is a
common practice in the Liver Disorders [McDermott and Forsyth 2016], MicroMass [Mahe et al.

1Optimization benchmarks include O1-2, O4-5 [Williams 2013], O3, 8-9 [Fourer 2014], O6-7 [CPLEX 2015], O10-11 [Belotti

et al. 2011]. Machine learning benchmarks include M1,5 [Bertsimas and Dunn 2017], M2-3 [Chang 2012] and M4 [Bertsimas

et al. 2022].
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Table 1. The quality of the synthesized MILP constraints in terms of compactness.

Name #formula #var |C|
Synthesized Manually-Written

Name #formula #var |C|
Synthesized Manually-Written

#formula #var #formula #var #formula #var #formula #var

O1 3 6 197 4 8 3 6 Q1 2 4 1700 3 5 3 7
O2 1 6 69 3 6 3 6 Q2 2 5 1647 2 5 2 5
O3 1 6 99 3 6 3 6 Q3 2 4 1600 3 4 5 5
O4 1 4 96 2 6 4 6 Q4 21 13 3800 96 38 103 38
O5 5 11 90 20 20 50 40 Q5 1 4 160 1 4 1 4
O6 1 2 200 2 3 3 3 Q6 24 15 2500 101 25 101 25
O7 2 4 200 4 6 4 6 Q7 5 5 1100 21 11 7 9
O8 2 2 252 2 4 2 4 Q8 7 9 1300 19 13 14 14
O9 1 6 200 3 6 3 6 Q9 27 12 2600 107 20 125 29
O10 3 7 27 6 8 15 10 Q10 30 16 1880 134 22 144 27
O11 5 13 156 9 15 5 13 Q11 22 19 240 40 21 50 30
O12 1 4 200 2 5 2 5 M1 2 8 2.6M 5 10 5 10
O13 1 4 200 2 5 2 5 M2 1 5 5700 2 6 4 6
O14 1 4 200 2 5 2 5 M3 2 11 3366 4 11 4 11
O15 1 4 200 2 5 2 5 M4 2 6 5586 5 6 5 6
O16 2 5 280 4 7 4 7 M5 2 5 280 4 7 4 7
O17 2 5 280 4 7 4 7 M6 4 10 4200 8 14 10 15
O18 2 5 280 4 7 4 7 M7 5 9 4530 7 11 7 11
O19 2 5 280 4 7 4 7 M8 4 8 3702 6 9 8 11

2014], Adult [Kohavi et al. 1996] and Haberman Surv. datasets. We show |� | in Column 4, which is
the number of pre-simpli�ed decision variables generated by Gurobi solver; |� | is a frequently-used
indicator for estimating the size of the search space. Here,M1 is an outlier: it has an unusually-large
value for |� | because it takes the entire Adult [Kohavi et al. 1996] dataset as input, consisting of
48,842 concrete data elements.

The remainder of Table 1 compares the size of the synthesized MILP constraint with the size of
the manually-written constraint. The size is measured in terms of both the number of subformulas
ink and the number of variables ink .

8.2.1 Compactness. The results in Table 1 show that, overall, the synthesized constraints are
as compact as the manually-written constraints. This is a signi�cant achievement on its own,
considering the amount of time and expertise needed to write the equivalent MILP constraints
manually. Except for a few cases such as &7 and &8, the synthesized constraints are either as
compact as, or more compact than, the manually-written constraints. In some cases, the synthesized
constraints are signi�cantly more compact. For Q9, the number of subformulas is 14% smaller. For
O5, in particular, the number of subformulas is less than half of the manually-written version.

8.2.2 MILP-solving Time. We also compared the synthesized constraint with the manually-written
constraints in terms of the MILP-solving time. For consistency, we encoded all problems in Ju-
lia [Bezanson et al. 2017] and then solved them using the state-of-the-art Gurobi solver [Gurobi Op-
timization 2018]. The results are shown in Fig. 15, which represents the running time of the
synthesized constraints using "◦", and the running time of the manually-written constraints using
"+". Here, the G-axis is the benchmark index for O1-O19, Q1-Q11, and M1-M8, while the ~-axis is
the time in seconds.
The results show that, for more than 50% of the benchmarks, the synthesized constraint has

almost the same MILP-solving time as the manually-written constraint. While some manually-
written constraints have shorter MILP-solving time (e.g., O8, M3), the di�erence is less than 4%. For
the remainder of the benmarks, the synthesized constraints have sign�cantly shorter MILP-solving
time. ForQ3-4, Q6, Q9-10, the synthesized constraints have much shorter MILP-solving time. Overall,
the average performance improvement is more than 9.8%.
This improvement can be attributed in part to the ConvexHullSplit procedure, which splits

variables to capture the correlation between subformulas in q and thus signi�cantly reduces the
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ID D
Synthesis Time

ID D
Synthesis Time

None Decomp Falsify Both None Decomp Falsify Both

O1 6 7689s 7689s 181s 181s Q1 5 T/O 2293s T/O 133s
O2 4 57s 37s 3s 3s Q2 4 2517s 846s 95s 95s
O3 4 133s 53s 6s 6s Q3 5 T/O 615s 112s 112s
O4 6 T/O 2409s T/O 158s Q4 6 T/O T/O T/O 4212s
O5 5 T/O 4785s T/O 552s Q5 3 174s 174s 3s 3s
O6 5 T/O 1836s T/O 217s Q6 6 T/O T/O T/O 5522s
O7 5 T/O 3439s T/O 351s Q7 7 T/O 7131s T/O 651s
O8 3 T/O 2049s T/O 37s Q8 6 T/O 7845s T/O 379s
O9 4 1893s 931s 10s 10s Q9 6 T/O T/O T/O 4503s
O10 7 T/O 7309s T/O 612s Q10 6 T/O T/O T/O 4822s
O11 6 T/O 4968s 3727s 430s Q11 4 T/O T/O T/O 1265s
O12 3 T/O 526s T/O 3s M1 7 T/O 4125s T/O 373s
O13 3 T/O 519s T/O 8s M2 6 T/O 2323s T/O 206s
O14 3 T/O 534s T/O 9s M3 7 T/O 3579s 826s 335s
O15 3 T/O 507s T/O 9s M4 4 T/O 2964s 685s 244s
O16 4 T/O 1207s T/O 138s M5 4 T/O 2554s T/O 167s
O17 4 T/O 1225s T/O 163s M6 6 T/O 3213s T/O 188s
O18 4 T/O 1246s T/O 74s M7 6 T/O 4062s T/O 275s
O19 4 T/O 1288s T/O 94s M8 6 T/O 3491s T/O 210s

Fig. 16. The performance of our synthesis tool. Here, T/O means > 3

hours.

Fig. 17. The impact of each op-

timization technique.

relaxed solution space. Although ConvexHullSplit may add more variables, these variables are
e�ective in constraining the solution space, allowing the MILP solver to converge faster. This is
the case for O11, in particular: although the splitting has led to more subformulas (9 versus 5), the
synthesized constraint reduces the MILP-solving time by more than 41%, (69.42s versus 118.17s).

8.3 Results: The E�iciency of the Synthesis Tool

To evaluate the e�ciency of the synthesis tool, we analyzed its running time for all benchmarks.
We also investigated the impact of two important components of our method, by comparing
the performance with and without them. The results are shown in Fig. 16. Column 1 shows the
benchmark name, and Column 2 shows the maximal depth of the intermediate AST (corresponding
to a decomposed constraint q8 ). The next four columns show the running time of four variants
of our synthesis tool. None uses neither EnrichDsl nor FalsifyBit subroutines; Decomp uses
EnrichDsl but not FalsifyBit; Falsify uses FalsifyBit but not EnrichDsl; and Both uses both
components.
The results in Fig. 16 show that our complete method (Both) is e�cient in synthesizing MILP

constraints and scalable for handling real-world speci�cations. For most of the benchmarks, it
�nishes quickly. For more than half of the benchmarks, it �nishes within 5 minutes. For a few
benchmarks, e.g.,&4 and&6, it takes more than an hour; however, considering how labor-intensive
and time-consuming it is for end users to write the MILP constraints manually, the time taken by
the synthesis tool is acceptable. In terms of scalability, since the benchmark set consists of a diverse
set of speci�cations collected from various sources, the fact that all of them can be handled by our
tool means the tool is scalable enough in practice.

The results also demonstrate the impact of the two main algorithmic innovations in our method.
WithoutDecomp and Falsify, the synthesis tool cannot �nish most of the benchmarks within the
time limit. Here, T/O stands for timed out after 3 hours. With either of them, while the performance
improves signi�cantly, there are still many benchmarks that cannot be �nished within the time
limit. However, it is clear that they have complementary strengths in speeding up the synthesis
process. With both of them enabled, our tool is able to �nish all benchmarks.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.



184:20 Jingbo Wang, Aarti Gupta, and Chao Wang

Table 2. Results for benchmarks that have no manually-wri�en solutions.

Name Description of the Problem #formula #var |C|
Synthesized

MILP-solving Time D
Synthesis Time

#formula #var None Decomp Falsify Both

Q12 Implication Constraints (SO) 3 4 216 12 7 195s 5 T/O 3209s T/O 212s
Q13 Implication of Int/Bool/Real (MathSE) 1 7 459 11 12 421s 6 T/O 4261s T/O 359s
Q14 Chain of Implications (OR SE) 3 7 392 5 11 136s 5 T/O 4350s T/O 297s
Q15 Disjunctive Expression (OR SE) 3 5 180 6 7 72s 5 T/O 2062s T/O 183s
Q16 Disjunctive Expression in DAG (OR SE) 5 11 1940 21 17 1618s 7 T/O 6598s T/O 589s
Q17 Chain of Disjunctions (OR SE) 1 6 270 3 6 186s 5 T/O 2795s 678.4s 241s
Q18 Exclusive Conditions (OR SE) 3 6 954 7 9 487s 6 T/O 2928s T/O 263s
Q19 Robust Implication (OR SE) 3 2 1650 3 3 711s 4 T/O 1448s T/O 125s
Q20 Union-closed Sets Conjecture (OR SE) 1 4 1800 3 4 846s 4 T/O 814s 132s 132s
Q21 Max in Constraints (OR SE) 1 4 2395 12 7 2024s 6 T/O 3850s T/O 324s
Q22 Absolute in Constraints (OR SE) 1 3 476 2 5 315s 4 T/O 1266s T/O 107s
Q23 Compact Continuous If (SO) 2 2 150 1 3 69s 4 T/O 1741s T/O 143s

The two optimizations are also synergistic in that, when using both of them, the performance
improvement is signi�cantly more than the addition of what can be achieved by each in isolation. To
illustrate this observation, we plot in Fig. 17 the running time of the four variants of our synthesis
tool for a subset of the benchmarks, namely O2-O19. We omit O1 since the numbers are too big
to �t in the same scale as those of the other benchmarks. For T/O case, we plot zero as its value.
First, let us focus on the blue (Decomp) and pink (Falsify) bars in Fig. 17: they show that Decomp
is more e�ective than Falsify when each of them is used in isolation (the latter of which still
corresponds to many T/O cases). Next, let us focus on the blue (Decomp) and orange (Both) bars:
they show that, when Falsify is used together with Decomp, the reduction (from the blue bars
to the orange bars) is drastic.

8.4 Results: Benchmarks without Manually-Wri�en Solutions

In addition to the 38 benchmarks shown in Fig. 14, we also evaluated SynMio on 12 benchmarks
for which manually-written solutions do not exist. In other words, answers to these 12 problems
collected from various online forums are either empty, incomplete, incorrect or only applicable to a
certain optimizer.
Table 2 shows the benchmark name and the type of logical constraints in Columns 1-2, where

SO, MathSE, and ORSE stands for the online forums StackOverflow,MathStackExchange and
OperationsResearchStackExchange, respectively.
Columns 3-7 are similar to Columns 2-6 of Table 1. They indicate that, for most benchmarks,

new variables are needed in the synthesized constraints to linearize the input logical constraints.
Furthermore, the synthesized constraint may have many more formulas than the input constraint
(e.g., Q13 and Q21). The reason is that the input constraint has to be decomposed to many subcon-
straints, or the input constraint contains operations such as max(x1,x2,x3). In order to remove the
max() function, our method needs to introduce multiple variables v1,v2,v3 and the corresponding
predicates v1↔(x1>x2), v2↔max(x1,x2) and v3↔(max(x1,x2)>x3).

Columns 9-13 shows that our method is e�cient and scalable in synthesizing MILP constraints for
these benchmarks. They also demonstrate the e�ectiveness of our twomain algorithmic innovations.
Speci�cally, our complete method (Both) is the most e�cient and, for more than 70% of the
benchmarks, it is able to �nish synthesis within 5 minutes.

9 RELATED WORK

There are two lines of prior work on converting Boolean logic operations to MILP constraints,
which are the most closely related to ours. However, as we have already mentioned brie�y, they both
have severe limitations in the kinds of Boolean logic constraints that they can handle. In particular,
Bertsimas et al. [Bertsimas et al. 2021; Bertsimas and Van Parys 2020] impose a regularization
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term to their objective functions, with the goal of allowing Boolean logic relations; however, the
method works only for a restricted subclass of problems and thus cannot linearize arbitrary Boolean
expressions. The Big-" methods [Cococcioni and Fiaschi 2021; Fourer et al. 1987; Glover 1975]
introduce a large number associated with each arti�cial variable, called " , to ensure that the
Boolean logic constraint holds when the Boolean indicator variable is False. However, the" value
has a signi�cant and often unpredictable impact on the MILP-solving performance, which may lead
to numerical instability. In contrast, our method does not have such problems since it linearizes the
Boolean logic operations without using the" value at all.
Traditionally, MILP solvers and SMT solvers focus on problems in di�erent niche applications.

However, in recent years, there are e�orts on bridging the gap. On the MILP solver side, there
are e�orts on extending the core MILP-solving algorithms to handle a limited number of Boolean
logic operations natively. For example, IBM ILOG CPLEX [CPLEX 2015] automatically transforms
logical constraints into equivalent linear formulations via automatic creation of new indicator
variables. However, it explicitly branches on the indicator variable inside its solving procedure,
without inferring the linearized formulation. As a result, this linearization only works for CPLEX
and cannot be applied to other solvers that do not have such an inner solving algorithm to support
the logical constraints. Gurobi [Bixby 2007] restricts the antecedent of implication operator to be a
singular Boolean variable, as opposed to equality or inequality constraints. In contrast, our method
can handle arbitrary combinations of Boolean logic operators. It is also a solver-independent way of
transforming logical constraints to equivalent MILP constraints, before solving the MILP constraints
using any MILP optimization tool.

On the SMT solver side, there are e�orts on extending the SMT/Pseudo-Boolean solving paradigm
to more e�ciently solve subclassess of MILP problems [Devriendt et al. 2021; King et al. 2014;
Nuzzo et al. 2010; Shoukry et al. 2018]. For example, Pseudo-Boolean solvers [Chai and Kuehlmann
2003; Devriendt et al. 2021] optimize 0-1 integer linear programs (ILP) by interleaving LP solving
with con�ict-driven pseudo-Boolean search. King et al. [King et al. 2014] integrate MIP solvers with
SMT, to improve its optimization performance. However, these techniques focus exclusively on
enhancing SMT solvers with optimization modules. None of them paid attention to the linearized
formulas translated from Boolean constraints. Other works [Nuzzo et al. 2010; Shoukry et al. 2018]
use a lazy combination of SMT solving and convex programming to determine the satis�ability
of logic formulas over Boolean variables and convex constraints; however, they do not focus on
optimizing the MILP problems.

While Mixed Boolean-Arithmetic (MBA) expressions [Feng et al. 2020; Liem et al. 2008; Liu et al.
2021; Shen and Ming 2021; Zhou et al. 2007] appear to be similar to MILP constraints, there are
sign�cant di�erences. MBA expressions can directly combine arithmetic operations (in the integer
modular ring Z/2=) with Boolean operations, but they focus on the discrete domain. In contrast,
MILP contains arithmetic operations for both discrete and continuous values, but does not allow
arbitrary bitwise Boolean operations. In practice, MBA-based techniques have been used primarily
for obfuscation as well as deobfuscation [Blazytko et al. 2017; Shen and Ming 2021; Zhou et al.
2007], where the focus is on converting computations into MBA expressions, and vice versa, instead
of supporting the optimization goals such as maximization/minimization in MILP.
Since our method relies on the popular SyGuS [Alur et al. 2013] framework for synthesizing

MILP constraints, it is related to a large body of work on partitioning or pruning the search space
and improving the e�ciency of SyGuS [Alur et al. 2017; Eldib and Wang 2014; Eldib et al. 2016; Feng
et al. 2018; Feser et al. 2015; Guo et al. 2019; Polikarpova et al. 2016; Reynolds et al. 2019; Wang et al.
2021, 2017]. Some of them rely on partitioning [Eldib and Wang 2014; Eldib et al. 2016] or utilize
type-directed pruning techniques to avoid infeasible programs [Feser et al. 2015; Frankle et al. 2016;
Guo et al. 2019; Osera and Zdancewic 2015; Polikarpova et al. 2016], while others leverage semantic
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information of the DSL to check the feasibility of partial programs [Feng et al. 2018, 2017]. There
is also work on using abstract interpretation to build the space of feasible programs [Wang et al.
2017]. However, the di�erence is that, while these prior works start from an in�nitely large search
space and gradually shrink it until the desired solution is obtained, our method starts from an
under-approximated search space and we gradually enlarge it, which signi�cantly speeds up the
enumeration.

In the context of improving SyGuS, there are bottom-up enumeration techniques [Alur et al. 2017;
Lee 2021] that recursively decompose a given large synthesis problem into smaller subproblems,
and produce small program subexpressions via enumerative search. However, unlike our method
that decomposes the input speci�cation to make the synthesis problem realizable, they are not
concerned with realizability; instead, they work on a sub-problem satisfying a subset of examples.

We have used existing program synthesis tools as part of our tool. In this context, EUsolver [Alur
et al. 2017] and cvc4Syn [Reynolds et al. 2019] are the most closely related synthesis tools, as they
both target SMT expressions. However, our approach goes far beyond, by supporting the unin-
terpreted function (UF) symbols as syntactic constructs during syntax-guided synthesis, whereas
EUsolver and cvc4Syn are unable to manipulate UF during syntax-guided synthesis.

10 CONCLUSIONS

We have proposed a solver-independent and generally-applicable method for synthesizing correct,
e�cient and robust MILP constraints from a speci�cation expressed using linear integer/real
arithmetic constraints together with arbitrary combinations of Boolean logic operations. Starting
from the input speci�cation, our method �rst creates a domain speci�c language that is expressive
enough, then uses syntax-guided synthesis (SyGuS) to assemble a candidate, and �nally proves
that the candidate is equivalent to the input speci�cation. To improve performance, our method
uses an under-approximation technique to quickly prune the search space, and uses an over-
approximation technique to speed up equivalence veri�cation. Our experiments on a diverse set of
benchmarks show that the quality of the synthesized constraints are comparable to constraints
written manually by domain experts. Furthermore, the synthesis tool is fast and scalable enough
for handling real-world applications.

ACKNOWLEDGMENTS

We thank our shepherd Rastislav Bodik and the anonymous reviewers for their helpful feedback.
This work was partially funded by the U.S. National Science Foundation grant CCF-2220345.

REFERENCES

Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. 2019. Learning optimal and fair decision trees for non-

discriminative decision-making. In Proceedings of the AAAI Conference on Arti�cial Intelligence, Vol. 33. 1418–1426.

https://doi.org/10.1609/aaai.v33i01.33011418

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In International Conference

on Formal Methods in Computer Aided Design. IEEE. https://doi.org/1721.1/90876

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling enumerative program synthesis via divide and

conquer. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,

319–336. https://doi.org/10.1007/978-3-662-54577-5_18

Pietro Belotti, Leo Liberti, Andrea Lodi, Giacomo Nannicini, Andrea Tramontani, et al. 2011. Disjunctive inequalities:

applications and extensions. Wiley Encyclopedia of Operations Research and Management Science 2 (2011), 1441–1450.

Dimitris Bertsimas, Ryan Cory-Wright, and Jean Pauphilet. 2021. A uni�ed approach to mixed-integer optimization problems

with logical constraints. SIAM Journal on Optimization 31, 3 (2021), 2340–2367. https://doi.org/1721.1/144075

Dimitris Bertsimas, Ryan Cory-Wright, and Jean Pauphilet. 2022. Solving Large-Scale Sparse PCA to Certi�able (Near)

Optimality. J. Mach. Learn. Res. 23 (2022), 13–1.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.

https://doi.org/10.1609/aaai.v33i01.33011418
https://doi.org/1721.1/90876
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/1721.1/144075


Synthesizing MILP Constraints for E�icient and Robust Optimization 184:23

Dimitris Bertsimas and Jack Dunn. 2017. Optimal classi�cation trees. Machine Learning 106, 7 (2017), 1039–1082. https:

//doi.org/10.1007/s10994-017-5633-9

Dimitris Bertsimas and Bart Van Parys. 2020. Sparse high-dimensional regression: Exact scalable algorithms and phase

transitions. The Annals of Statistics 48, 1 (2020), 300–323. https://doi.org/10.1214/18-AOS1804

Je� Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia: A fresh approach to numerical computing.

SIAM review 59, 1 (2017), 65–98. https://doi.org/10.1137/141000671

Bob Bixby. 2007. The gurobi optimizer. Transp. Re-search Part B 41, 2 (2007), 159–178.

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. Syntia: Synthesizing the Semantics of

Obfuscated Code.. In USENIX Security Symposium. 643–659. https://doi.org/10.5555/3241189.3241240

Donald Chai and Andreas Kuehlmann. 2003. A fast pseudo-boolean constraint solver. In Proceedings of the 40th annual

Design Automation Conference. 830–835. https://doi.org/10.1145/775832.776041

Allison Chang, Dimitris Bertsimas, and Cynthia Rudin. 2012. An integer optimization approach to associative classi�cation.

In Advances in neural information processing systems. 269–277.

Allison An Chang. 2012. Integer optimization methods for machine learning. Ph. D. Dissertation. Massachusetts Institute of

Technology. https://doi.org/1721.1/72643

Marco Cococcioni and Lorenzo Fiaschi. 2021. The Big-M method with the numerical in�nite M. Optimization Letters 15, 7

(2021), 2455–2468. https://doi.org/10.1007/s11590-020-01644-6

IBM ILOG CPLEX. 2015. V12. 6 User’s Manual for CPLEX 2015. CPLEX division (2015).

Jo Devriendt, Ambros Gleixner, and Jakob Nordström. 2021. Learn to relax: Integrating 0-1 integer linear programming

with pseudo-Boolean con�ict-driven search. Constraints 26, 1 (2021), 26–55. https://doi.org/10.1007/s10601-020-09318-x

Hassan Eldib and Chao Wang. 2014. Synthesis of Masking Countermeasures against Side Channel Attacks. In International

Conference on Computer Aided Veri�cation. Springer, 114–130. https://doi.org/10.1007/978-3-319-08867-9_8

Hassan Eldib, Meng Wu, and Chao Wang. 2016. Synthesis of Fault-Attack Countermeasures for Cryptographic Circuits. In

International Conference on Computer Aided Veri�cation. Springer, 343–363. https://doi.org/10.1007/978-3-319-41540-6_19

Weijie Feng, Binbin Liu, Dongpeng Xu, Qilong Zheng, and Yun Xu. 2020. Neureduce: Reducing mixed boolean-arithmetic

expressions by recurrent neural network. In Findings of the Association for Computational Linguistics: EMNLP 2020.

635–644.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis using con�ict-driven learning. ACM

SIGPLAN Notices 53, 4 (2018), 420–435. https://doi.org/10.1145/3192366.3192382

Yu Feng, Ruben Martins, Jacob Van Ge�en, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based synthesis of

table consolidation and transformation tasks from examples. ACM SIGPLAN Notices 52, 6 (2017), 422–436. https:

//doi.org/10.1145/3062341.3062351

John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure transformations from input-output

examples. ACM SIGPLAN Notices 50, 6 (2015), 229–239. https://doi.org/10.1145/2813885.2737977

Richard John Forrester and Harvey J Greenberg. 2008. Quadratic binary programming models in computational biology.

Algorithmic Operations Research 3, 2 (2008).

Robert Fourer. 2014. Strategies for not linear optimization. In 5th INFORMS Optimization Society Conference. 6–8March.

Robert Fourer, David M Gay, and Brian W Kernighan. 1987. AMPL: A mathematical programming language. AT & T Bell

Laboratories Murray Hill, NJ.

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed synthesis: a type-

theoretic interpretation. ACM Sigplan Notices 51, 1 (2016), 802–815. https://doi.org/10.1145/2914770.2837629

Fred Glover. 1975. Improved linear integer programming formulations of nonlinear integer problems. Management science

22, 4 (1975), 455–460. https://doi.org/10.1287/mnsc.22.4.455

Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova. 2019. Program

synthesis by type-guided abstraction re�nement. Proceedings of the ACM on Programming Languages 4, POPL (2019),

1–28. https://doi.org/10.1145/3371080

LLC Gurobi Optimization. 2018. Gurobi optimizer reference manual.

Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas Reps. 2019. Proving unrealizability for syntax-guided

synthesis. In International Conference on Computer Aided Veri�cation. Springer, 335–352. https://doi.org/10.1007/978-3-

030-25540-4_18

Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas Reps. 2020. Exact and approximate methods for proving

unrealizability of syntax-guided synthesis problems. In ACM SIGPLAN Conference on Programming Language Design and

Implementation. 1128–1142. https://doi.org/10.1145/3385412.3385979

Tim King, Clark Barrett, and Cesare Tinelli. 2014. Leveraging linear and mixed integer programming for SMT. In 2014

Formal Methods in Computer-Aided Design (FMCAD). IEEE, 139–146. https://doi.org/10.1109/FMCAD.2014.6987606

Ron Kohavi et al. 1996. Scaling up the accuracy of naive-bayes classi�ers: A decision-tree hybrid.. In Kdd, Vol. 96. 202–207.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.

https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1214/18-AOS1804
https://doi.org/10.1137/141000671
https://doi.org/10.5555/3241189.3241240
https://doi.org/10.1145/775832.776041
https://doi.org/1721.1/72643
https://doi.org/10.1007/s11590-020-01644-6
https://doi.org/10.1007/s10601-020-09318-x
https://doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1007/978-3-319-41540-6_19
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/2914770.2837629
https://doi.org/10.1287/mnsc.22.4.455
https://doi.org/10.1145/3371080
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1145/3385412.3385979
https://doi.org/10.1109/FMCAD.2014.6987606


184:24 Jingbo Wang, Aarti Gupta, and Chao Wang

Woosuk Lee. 2021. Combining the top-down propagation and bottom-up enumeration for inductive program synthesis.

Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–28. https://doi.org/10.1145/3434335

Cli�ord Liem, Yuan Xiang Gu, and Harold Johnson. 2008. A compiler-based infrastructure for software-protection. In ACM

SIGPLANWorkshop on Programming Languages and Analysis for Security. 33–44. https://doi.org/10.1145/1375696.1375702

Binbin Liu, Weijie Feng, Qilong Zheng, Jing Li, and Dongpeng Xu. 2021. Software Obfuscation with Non-Linear Mixed

Boolean-Arithmetic Expressions. In International Conference on Information and Communications Security. Springer,

276–292. https://doi.org/10.1007/978-3-030-86890-1_16

Pierre Mahe, Maud Arsac, Sonia Chatellier, Valérie Monnin, Nadine Perrot, Sandrine Mailler, Victoria Girard, Mahendrasingh

Ramjeet, Jérémy Surre, Bruno Lacroix, et al. 2014. Automatic identi�cation of mixed bacterial species �ngerprints in a

MALDI-TOF mass-spectrum. Bioinformatics 30, 9 (2014), 1280–1286.

James McDermott and Richard S Forsyth. 2016. Diagnosing a disorder in a classi�cation benchmark. Pattern Recognition

Letters 73 (2016), 41–43. https://doi.org/10.1016/j.patrec.2016.01.004

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An e�cient SMT solver. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Pierluigi Nuzzo, Alberto Puggelli, Sanjit A Seshia, and Alberto Sangiovanni-Vincentelli. 2010. CalCS: SMT solving for

non-linear convex constraints. In Formal Methods in Computer Aided Design. IEEE, 71–79.

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. ACM SIGPLAN Notices 50,

6 (2015), 619–630. https://doi.org/10.1145/2737924.2738007

Brandon Paulsen and Chao Wang. 2022a. Example Guided Synthesis of Linear Approximations for Neural Network

Veri�cation. In International Conference on Computer Aided Veri�cation. Springer, 149–170. https://doi.org/10.1007/978-

3-031-13185-1_8

Brandon Paulsen and ChaoWang. 2022b. LinSyn: Synthesizing Tight Linear Bounds for Arbitrary Neural Network Activation

Functions. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,

357–376. https://doi.org/10.1007/978-3-030-99524-9_19

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic re�nement types.

ACM SIGPLAN Notices 51, 6 (2016), 522–538. https://doi.org/10.1145/2980983.2908093

Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark Barrett, and Cesare Tinelli. 2019. cvc 4 sy: smart and fast term

enumeration for syntax-guided synthesis. In International Conference on Computer Aided Veri�cation. Springer, 74–83.

https://doi.org/10.1007/978-3-030-25543-5_5

Junfu Shen and Jiang Ming. 2021. Mba-blast: unveiling and simplifying mixed boolean-arithmetic obfuscation. (2021).

Yasser Shoukry, Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, Sanjit A Seshia, George J Pappas, and Paulo Tabuada.

2018. SMC: Satis�ability modulo convex programming. Proc. IEEE 106, 9 (2018), 1655–1679. https://doi.org/10.1109/

JPROC.2018.2849003

Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided languages with Rosette. In Proceedings of the 2013 ACM

international Symposium on New Ideas, New Paradigms, and Re�ections on Programming & Software. 135–152. https:

//doi.org/10.1145/2509578.2509586

Jingbo Wang, Yannan Li, and Chao Wang. 2022. Synthesizing Fair Decision Trees via Iterative Constraint Solving. In

International Conference on Computer Aided Veri�cation. Springer, 364–385. https://doi.org/10.1007/978-3-031-13188-2_18

Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang. 2021. Data-Driven Synthesis of Provably Sound Side

Channel Analyses. In IEEE/ACM International Conference on Software Engineering. IEEE, 810–822. https://doi.org/10.

1109/ICSE43902.2021.00079

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017. Program synthesis using abstraction re�nement. Proceedings of the ACM

on Programming Languages 2, POPL (2017), 1–30. https://doi.org/10.1145/3158151

H Paul Williams. 2013. Model building in mathematical programming. John Wiley & Sons.

Yongxin Zhou, Alec Main, Yuan X Gu, and Harold Johnson. 2007. Information hiding in software with mixed boolean-

arithmetic transforms. In International Workshop on Information Security Applications. Springer, 61–75. https://doi.org/

10.1007/978-3-540-77535-5_5

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.

https://doi.org/10.1145/3434335
https://doi.org/10.1145/1375696.1375702
https://doi.org/10.1007/978-3-030-86890-1_16
https://doi.org/10.1016/j.patrec.2016.01.004
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1007/978-3-031-13185-1_8
https://doi.org/10.1007/978-3-031-13185-1_8
https://doi.org/10.1007/978-3-030-99524-9_19
https://doi.org/10.1145/2980983.2908093
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1109/JPROC.2018.2849003
https://doi.org/10.1109/JPROC.2018.2849003
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1007/978-3-031-13188-2_18
https://doi.org/10.1109/ICSE43902.2021.00079
https://doi.org/10.1109/ICSE43902.2021.00079
https://doi.org/10.1145/3158151
https://doi.org/10.1007/978-3-540-77535-5_5
https://doi.org/10.1007/978-3-540-77535-5_5

	Abstract
	1 Introduction
	2 Motivation
	2.1 Example 1: From Online Q&A
	2.2 Example 2: Protein Folding

	3 Our Method
	4 Strengthening the DSL
	4.1 Decomposing the Specification
	4.2 Checking for Unrealizability
	4.3 Convex-hull Based Splitting

	5 Generating the MILP Candidates
	5.1 Under-approximation for Search Space Pruning
	5.2 Defining Preconditions

	6 Verifying the Equivalence
	6.1 An Example
	6.2 Abstracting with Uninterpreted Functions

	7 Optimizations
	7.1 Type Annotations for the DSL
	7.2 Leveraging the Type Information

	8 Experiments
	8.1 Benchmarks
	8.2 Results: The Quality of Synthesized MILP Constraints
	8.3 Results: The Efficiency of the Synthesis Tool
	8.4 Results: Benchmarks without Manually-Written Solutions

	9 Related Work
	10 Conclusions
	Acknowledgments
	References

