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 THE JOURNAL OF SYMBOLC Looic

 Volume 15, Number 2, June 1950

 COMPLETENESS IN THE THEORY OF TYPES'

 LEON HENKIN 2

 The first order functional calculus was proved complete by Godel3 in 1930.
 Roughly speaking, this proof demonstrates that each formula of the calculus is
 a formal theorem which becomes a true sentence under every one of a certain
 intended class of interpretations of the formal system.

 For the functional calculus of second order, in which predicate variables may

 be bound, a very different kind of result is known: no matter what (recursive)
 set of axioms are chosen, the system will contain a formula which is valid but
 not a formal theorem. This follows from results of Godel4 concerning systems
 containing a theory of natural numbers, because a finite categorical set of axioms
 for thehpositive integers can be formulated within a second order calculus to
 which a functional constant has been added.

 By a valid formula of the second order calculus is meant one which expresses
 a true proposition whenever the individual variables are interpreted as ranging
 over an (arbitrary) domain of elements while the functional variables of degree
 n range over all sets of ordered n-tuples of individuals. Under this definition of
 validity, we must conclude from G6del's results that the calculus is essentially
 incomplete.

 It happens, however, that there is a wider class of models which furnish an
 interpretation for the symbolism of the calculus consistent with the usual axioms
 and formal rules of inference. Roughly, these models consist of an arbitrary
 domain of individuals, as before, but now an arbitrary5 class of sets of ordered
 n-tuples of individuals as the range for functional variables of degree n. If we

 Received March 11, 1949.
 1 The material in this paper is included in The completeness of formal systems, a Thesis

 presented to the faculty of Princeton University in candidacy for the degree of Doctor of
 Philosophy and accepted in October, 1947. The results were announced at the meeting of
 the Association for Symbolic Logic in December, 1947 (cf. this JOURNAL, Vol. 13 (1948), p.
 61).

 2 The author wishes to thank Professor Alonzo Church for encouragement, suggestion,
 and criticism in connection with the writing of his Thesis, and to acknowledge the aid of
 the National Research Council who supported that project with a predoctoral fellowship.

 3 Kurt G6del, Die Vollstdndigkeit der Axiome des logischen Funktionenkalktils, Monats.
 hefte fur Mathematik und Physik, vol. 37 (1930), pp. 349-360.

 4Kurt Godel, Uber formal unentscheidbare Sdtze der Principia Mathematica und ver-
 wandter Systeme 1, Monatshefte fur Mathematik und Physik, vol. 38 (1931), pp. 173-198.

 5 These classes cannot really be taken in an altogether arbitrary manner if every formula
 is to have an interpretation. For example, if the formula F(x) is interpreted as meaning that
 x is in the class F, then -F(x) means that x is in the complement of F; hence the range for
 functional variables such as F should be closed under complementation. Similarly, if G
 refers to a set of ordered pairs in some model, then the set of individuals x satisfying the
 formula (3y)G(x, y) is a projection of the set G; hence, we require that the various domains
 be closed under projection. In short, each method of compounding formulas of the calculus
 has associated with it some operation on the domains of a model, with respect to which the
 domains must be closed. The statement of completeness can be given precisely and proved
 for models meeting these closure conditions.

 81
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 82 LEON HENKIN

 redefine the notion of valid formula to mean one which expresses a true proposi-
 tion with respect to every one of these models, we can then prove that the usual
 axiom system for the second order calculus is complete: a formula is valid if and
 only if it is a formal theorem.6

 A similar result holds for the calculi of higher order. In this paper, we will give
 the details for a system of order X embodying a simple theory of (finite) types.
 We shall employ the rather elegant formulation of Church,7 the details of which
 are summarized below:

 Type symbols (to be used as subscripts):
 1. o and & are type symbols
 2. If a, , are type symbols so is (ad).

 Primitive symbols (where a may be any type symbol):
 Variables: fa , 9a ,, xa X a y za, I, 9a, *-
 Constants: N(oo)I A((oo)o), H(o(oa)) (a(oa))
 Improper: X, (,).

 Well-formed formulas (wffs) and their type:
 1. A variable or constant alone is a wff and has the type of its subscript.

 2. If Aa fand Bo are wffs of type (a3) and # respectively, then (A,# BO) is a wif
 of type a.

 3. If Aa is a wff of type a and ax a variable of type /8 then (XaqAa) is a wif of
 type (ad).

 An occurrence of a variable ax is bound if it is in a wff of the form (Xa#Aa);
 otherwise the occurrence is free.

 Letters A. a Ba , Ca , will be used as syntactical variables for wffs of type a.

 Abbreviations:

 (---,A,) for (N(,.)A.)
 (Ao v Bo) for ((A((a,)o)Ao)Bo)
 (A0B,) for (--((-Ao) v (-Bo)))
 (A. D B.) for ((-A,) v B.)
 (aa)Bo for (ll(o(oa))(XaaBo))

 (3aa)Bo for (- ((aa)(Q-Ao)))
 (iaaBo) for (L(a(oa)) (XaaBo))
 Q((oa)a) for (Xxa(Xya(foa) ((foaXa) D (foaya))))
 (Aa = Ba) for ((Q((oa)a)Aa)(Ba).

 In writing wffs and subscripts, we shall practise the omission of parentheses
 and their supplantation by dots on occasion, the principal rules of restoration

 6 A demonstration of this type of completeness can be carried out along the lines of the

 author's recent paper, The completeness of the first order functional calculus, this JOURNAL,
 vol. 14 (1949), pp. 159-166.

 7 Alonzo Church, A formulation of the simple theory of types, this JOURNAL, VoL. 5 (1940),
 pp. 56-68.
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 COMPLETENESS IN THE THEORY OF TYPES 83

 being first that the formula shall be well-formed; secondly, that association is
 to the left; and thirdly, that a dot is to be replaced by a left parenthesis having
 its mate as far to the right as possible. (For a detailed statement of usage, refer
 to Church.7)

 Axiome and axiom schemata:

 1. (X. v X,) D X.
 2. X. D (X. v Y.)
 3. (x, v Yo) D (y 0V xo)
 4. (x0 DY y) D. (z. v xo) D (z0 v yo)

 5 . lo(oa)foa D foaxa
 6D. (xa)(yo V foaxa) D Yo V Ho(oa)foa
 10. xo Yo D Xo = Yo (X#)(Ja1,X = gauxz) D = ga

 1 . foaxa D foa(ta(oajfoa)

 Rules of Inference:

 I. To replace any part Aa of a formula by the result of substituting al for
 be throughout A.a, provided that be is not a free variable of A.a and ap does not
 occur in Aa .

 II. To replace any part (XaA,)B, of a wfF by the result of substituting B, for
 a, throughout. A#5, provided that the bound variables of As are distinct both
 from a, and the free variables of B, .

 III. To infer Ao from Bo if Bo may be inferred from Ao by a single application
 of Rule II.

 IV. From Aoaaa to infer AoaBa if the variable aa is not free in Aoa.
 V. From Ao D Bo and A oto infer Bo .
 VI. From Aoaaa to infer llo(oa)Aoa provided that the variable aa is not free in

 Aoa .

 A finite sequence of wffs each of which is an axiom or obtained from preceding
 elements of the sequence by a single application of one of the rules I-VI is
 called a formal proof. If A is an element of some formal proof, we write F A
 and say that A is a formal theorem.

 This completes our description of the formal system. In order to discuss the
 question of its completeness, we must now give a precise account of the manner
 in which this formalism is to be interpreted.

 By a standard model, we mean a family of domains, one for each type-symbol,
 as follows: D, is an arbitrary set of elements called individuals, Do is the set
 consisting of two truth values, T and F, and D.,# is the set of all functions defined
 over Dp with values in Da.

 By an assignment with respect to a standard model {Da., we mean a mapping
 * of the variables of the formal system into the domains of the model such that
 for a variable aa of type a as argument, the value 0k(aa) of 0 is an element of Da,.

 We shall associate with each assignment 4 a mapping V, of all the formulas of
 the formal system such that V0 (Aa) is an element of Da, for each wif A. of type
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 84 LEON HENKIN

 a. We shall define the values V0(Aa) simultaneously for all 4 by induction on the
 length of the wff Aa

 (i) If A. is a variable, set V#(Aa) = 4(Aa). Let V,(N..) be the function
 whose values are given by the table

 x V,(N..)(x)

 T F

 F T

 Let Vo (Ao..) be the function whose value for arguments T, F are the functions
 given by the tables 1, 2 respectively.

 1. x V, (A000)(T)(x) 2. x V,(A ..) (F) (x)

 T T T T
 F T F F

 Let V(0(I0,(,)) be the function which has the value T for just the single argument
 which is the function mapping Da into the constant value T. Let VO(La(oa)) be
 some fixed function whose value for any argument f of Doa is one of the elements
 of Da mapped into T by f (if there is such an element).

 (ii) If A a has the form BchC define V,(BcCp) to be the value of the function
 V,(Bp) for the argument VO(C#).

 (iii) Suppose A., has the form (XamBo). We define VO(,Xa#B) to be the function
 whose value for the argument x of Dp is V#(B,), where 4* is the assignment which
 has the same values as 4 for all variables except ap , while 46(ap) is x.

 We can now define a wff A. to be valid in the standard sense if VO(A.) is T for
 every assignment 4 with respect to every standard model {Da}.8 Because the
 theory of recursive arithmetic can be developed within our formal system as
 shown by Church,7 it follows by G&del's methods4 that we can construct a
 particular wff A. which is valid in the standard sense, but not a formal theorem.

 We can, however, interpret our formalism with respect to other than the
 standard models. By a frame, we mean a family of domains, one for each type
 symbol, as follows: D, is an arbitrary set of individuals, D. is the set of two truth
 values, T and F, and Da. is some class of functions defined over Dp with values
 inDc .

 Given such a frame, we may consider assignments 4b mapping variables of the
 formal system into its domains, and attempt to define the functions V, exactly
 as for standard models. For an arbitrary frame, however, it may well happen
 that one of the functions described in items (i), (ii), or (iii) as the value of some

 V#(Aa) is not an element of any of the domains.
 A frame such that for every assignment 0 and wff Aa of type a, the value

 V#(A.) given by rules (i), (ii), and (iii) is an element of D. , is called a general
 model. Since this definition is impredicative, it is not immediately clear that any
 non-standard models exist. However, they do exist (indeed, there are general
 models for which every domain D. is denumerable), and we shall give a method
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 COMPLETENESS IN THE THEORY OF TYPES 85

 of constructing every general model without resorting to impredicative proc-
 esses.

 Now we define a valid formula in the general sense as a- formula A4 such that

 VO(A.) 'is T for every assignment 4 with respect to any general model. We shall
 prove a completeness theorem for the formal system by showing that Ao is
 valid in the general sense if and only if I A.

 By a closed well-formed formula (cwff), we mean one in which no occurrence
 of any variable is free. If A is a set of cwffs such that, when added to the axioms
 1-6a, lOa, la, a formal proof can be obtained for some wff Ao , we write A F- Ao .
 If A F- Ao for every wif Ao, we say that A is inconsistent, otherwise consistent.

 THEOREM 1. If A is any consistent set of cwffs, there is a general model (in
 which each domain D. is denumerable) with respect to which A is satisfiable.8

 We shall make use of the following derived results about the formal calculus
 which we quote without proof:

 VII. The deduction theorem holds: If A, A. F- Bo, then A H A. D B. where
 A is any set of cwffs, Ao is any cwvff, and Bo is any wff. (A proof isgivenin Church.7)

 12. I- Ao D .e-Ao D Bo
 13. 1- A o D Bo D .-Ao D Bo D .Bo
 14. 1 A=a A a
 15. 1 A aBa DBa = Aa
 16. -Aa =BaD . Ba = Ca :D . Aa = Ca
 17. F AOD .(AO = Bo) D Bo
 18. ' -AO D. (A. = B.) D'B
 19. F Ao D.Bo D.A = Bo
 20. 1 -A. D . -.ob D . Ao = Bo

 21. F Aa. = A D. Bo = B D. AaOBO = AaB
 22. H A a#( (ax)e) -~ (A aRXA = wi4`adXz)) = A =0((x,)(A a#X# A ,x)) D* =

 A a
 23. H AO D Ao
 24. H CoD.Cov Ao
 25. F- Co D -Ao D Co vAo
 26. - Co D . Ao D . -(Co v Ao)
 27. 1 o(oa)Aoa D AoaCa
 28. 1 Aoa((Xa)(A.Xa)) D fo(oa)Aoa
 29. 1 AoaCa D Aoa(ta(oa)Ca)
 30. H (-Bo D Bo) D Bo
 31. F (xa)Ao D AO

 8 In addition to the notion of validity, the mappings V. may be used to define the concept
 of the denotation of a wif A. containing no free occurrence of any variable. We first show (by
 induction) that if # and #, are two assignments which have the same value for every variable
 with a free occurrence in the wff B. , then V7,(B.) = V (B.). Then the denotation of A.
 is simply V, (A.) for any #. We also define the notion of satisfiability. If r is a set of wffs and
 * an assignment with respect some model IDaI such that V,(A.) is T for every A, in r, then
 we say that r is satisfiable with respect to the model (Do). If r is satisfiable with respect to
 some model, we say simply that it is satisfiable.
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 86 LEON HENKIN

 The first step in our proof of Theorem 1 is to construct a maximal consistent

 set r of cwffs such that r cQntains A, where by maximal is meant that if A. is
 any cwff not in r then the enlarged set (r, A.I is inconsistent. Such a set r
 may be obtained in many ways. If we enumerate all of the cwffs in some standard
 order, we may test them one at a time, adding them to A and previously added
 formulas whenever this does not result in an inconsistent set. The union of this
 increasing sequence of sets is then easily seen to be maximal consistent.

 r has certain simple properties which we shall use. If A, is any cwff, it is clear

 that we cannot have both r 1- A. andr 17 H--,A. for then by 12 and V, we would
 obtain r F- B, for any B., contrary to the consistency of r. On the other hand,
 at least one of the cwffs A,, --,.A. must be in r. For otherwise, using the maximal
 property of r we would have r, A, H B, and r, --,A. H B, for any B. . By VII,
 it then follows that r H A, D B, and r H --,A. D B,, whence by 13 and V
 r H B, contrary to the consistency of r.

 Two cwffs A. , B, of type a will be called equivalent if r H A. - B. . Using
 14, 16, and V, we easily see that this is a genuine congruence relation so that the

 set of all cwffs of type a is partitioned into disjoint equivalent classes [A.],
 [B,], *. such that [A.] and [B.] are equal if and only if A, is equivalent to
 Ba.

 We now define by induction on a a frame of domains (D. 1, and simultaneously
 a one-one mapping 4' of equivalence classes onto the domains D, such that

 4'([A.]) is in D.
 D. is the set of two truth values, T and F, and for any cwff A, of type o 4'([A.])

 is T or F according as A, or --,A, is in r. We must show that 8 is a function of
 equivalence classes and does not really depend on the particular representative
 A, chosen. But by 17 and V, we see that if r H A, and B, is equivalent to A,
 (i.e., r FH AO = B,), then r H B, ; and similarly if r H --,A. and B, is equivalent
 to A, , then r H --,B. by 18. To see that 4' is one-one, we use 19 to show that
 if 4'([A,]) and 4'([B,]) are both T (i.e., r H A, and r H B,), then r H A, = B,
 so that [A,] is [B,]. Similarly 20 shows that [A,] is [B,] in case 4'([A,]) and 4'([B,])
 are both F.

 D, is simply the set of equivalence classes [AJ] of all cwffs of type c. And
 4'([A,]) is [AJ] so that 4' is certainly one-one.

 Now suppose that D. and Do have been defined, as well as the value of 4' for
 all equivalence classes of formulas of type a and of type A, and that every element
 of D. , or D, X is the value of 4' for some [A,], or [By] respectively. Define 4'([Aad])
 to be the function whose value, for the element (D([B,]) of D,,, is 4'([A,,Bo]). This
 definition is justified by the fact that if A',, and Bs' are equivalent to A,,, and
 B, respectively, then AgB' is equivalent to A,,,Bo , as one sees by 21. To see
 that 4' is one-one, suppose that 4'([A,,]) and 4'([Ad,,]) have the same value for
 every -'([BB]) of Do . Hence 4'([ApBp]) = 4b([AapBp]) and so, by the induction
 hypothesis that 4' is one-one for equivalence classes of formulas of type a, A aBp
 is equivalent to AapBo for each cwff Be . In particular, if we take B, to be (ixe)

 (AaOxo = A Ipxp), we see by 22 that Aa,, and A',,q are equivalent so that [A,] =
 [A',]. The one-one function 4' having been thus completely defined, we define
 Da, to be the set of values 4'([ApA]) for all cwffs A.A .
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 COMPLETENESS IN THE THEORY OF TYPES 87

 Now let 4 be any assignment mapping each variable xa into some element
 4b([A a]) of Da, where Aa is a cwff. Given any wff Be , let Be be a cwff obtained

 from Be by replacing all free occurrences in Be of any variable xa by some cwff

 A. such that 4(xa) = -t([A.]).

 LEMMA. For every 4. and Be we have V,(Bp) = ([Be ]).
 The proof is by induction on the length of Be .

 (i) If Be is a variable and 5(Bp) is the element I4([Ap]) of Dp , then by definition
 BP is some cwff A' equivalent to As and VO(Bp) = O(Bp) = cL(tAA]) = 4([A]) =

 Suppose Be is N., , whence Be is N.. . If -t([A.]) is T, then by definition r F A.
 whence by 23 r F- -N.ooA. so that cl([N..A,]) is F. That is, 41([N..]) maps T into
 F. Conversely, if 4([AI) is F, then by definition r F- N..A. so that/4([..A.])
 is T; i.e., 4D([N..]) maps F into T. Hence VO(Bp) = U([B,]) in this case.

 Suppose Be is A.., whence Be is A... . If 4.([C,]) is T, then by definition
 r F- C. whence by 24 r F- AoooC.Ao for any A. so that b([A...CA,]) is T no
 matter whether b[(Ao)] is T or F. Similarly, using 25 and 26, we see
 that b([A...C.Ao]) is T, or F, if 4b([Co]) is F, and '([Ao]) is T, or F respectively.
 Comparing this with the definition of V,(Ao..), we see that the lemma holds in
 this case also.

 Suppose Be is go.) , whence BP is Ho.(a) . If the value of 4([L.(0a)]) for the
 argument 4)([A.a]) is T, then r F- Ho(a)Aoa whence by 27 r F- Ao.aCa for every
 cwff Ca so that 4([A.a]) maps every element of Da into T. On the other hand,
 if 4?([Aoa]) maps every 4([Ca]) into T, then we have, taking the particular case
 where Ca is (7xa) - (A axa), r F- Aoa((7xa) - (Aoaxa)) whence by28 r F- flo(oa)AOa.
 That is 4U([1o(oa)]) maps ([Ao.a]) into T. The lemma holds in this case.

 Suppose Be is ta(oa) , whence B" is ta(oa) . Let Aoa be a cwff such that 4?([Aoa])
 maps some 4b([Ca]) into T so that r F- AoaCa . Then by 29 r F- Aoa(La(oa)Aoa) 50
 that the value of t([La(oa)]) for the argument 4([Aoa]) is mapped into T by the
 latter. Therefore, we may take F(Ua(oa)]) to be Vo(ta(oa)).

 (ii) Suppose that B# has the form BRICK . We assume (induction hypothesis)
 that we have already shown 4([B#]) = VO(BO) and 4([C+J) = V#(C).

 Now VO(B#C,) is the value of VO(B#) for the argument VO(C,), or the value
 of 4([B,]) for the argument 4I([C+]), which is 4)([B0C+]). But (BpC')" is simply
 BICK . Hence V,(BflC,) = 4([(B0C,)"]).

 (iii) Suppose that B# has the form XaCa and our induction hypothesis is that
 C([Coa]) = VO(Ca) for every assignment 4. Let 4)([A,]) be any element of D,.
 Then the value of 4([(XaCa)4]) for the argument 4)([A,]) is by definition
 4)([(XazyCa)"A]y).

 But by applying II to the right member of the instance F- (XaC)+A_ -
 (XaCa)"A of 14, we find F- (XaCa)"A_ = C* , where i1 is the assignment which
 has the same value as 4 for every argument except the variable a, and *k(as) is
 4'([A.]). That is, [(XayCa)Ay] = [Co] so that the value of 'I(kaCa)"j) for the
 argument 4)([A,]) is 4([Ca])-or VO(Ca) by induction hypothesis. Since for every
 argument 4([(XaCa)'J) and VO(XaCa) have the same value, they must be equal.

 This concludes the proof of our lemma.
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 88 LEON HENKIN

 Theorem 1 now follows directly from the lemma. In the first place, the frame

 of domains {Da) is a general model since VO(Bq) is an element of D, for every
 wff Bp and assignment 4. Because the elements of any Da are in one-one cor-
 respondence with equivalence classes of wffs each domain is denumerable. Since

 for every cwff A" = A, . being an arbitrary assignment, since therefore for
 every cwff A. of r we have b([A,]) = T, and since A is a subset of r, it follows
 that V,(A.) is T for any element A. of A; i.e., A is satisfiable with respect to
 the model IDa}.

 THEOREM 2. For any wff A. , we have I- Ao if and only if A. is valid in the general
 sense.

 From the definition of validity, we easily see that A, is valid if and only if the
 cwff (xal) ... (xa,)A, is valid, where Xa , * , Xan are the variables with free
 occurrences in A. ; and hence A. is valid if and only if V,('o(xUa) ... (xaJ)Ao)
 is F for every assignment 4 with respect to every general model {D.}. By Theo-
 rem 1, this condition implies that the set A whose only element is the cwff

 '-(xaj) ... (xa.)Ao is inconsistent and hence, in particular, -'(Xal) ... (Xan)Ao
 I- (xa1) ... (xa.)Ao . Now applying VII, 30, and 31 (several times), we see that
 if Ao is valid, then I- Ao . The converse can be verified directly by checking the
 validity of the axioms and noticing that the rules of inference operating on valid
 formulas lead only to valid formulas.

 THEOREM 3. A set r of cwffs is satisfiable with respect to some model of denumer-

 able domains Da if and only if every finite subset A of r is satisfiable.
 By Theorem 1, if r is not satisfiable with respect to some model of denumerable

 domains, then r is inconsistent so that, in particular, r H (x.)x.. Since the
 formal proof of (x0)x0 contains only a finite number of formulas, there must be

 some finite subset A = {A1 , * *, An) of r such that Al , * * , An I- (xo)xo ,
 whence by repeated applications of VII, I- AI D . . .. :D . An D (x0)x, . But
 then by Theorem 2, the cwff Al D . D D D . An D (x.)x. is valid so that we must
 have some Vo,(Ai) = F, i = 1, ... , n, for any 4 with respect to any model; i.e.,
 A is not satisfiable. Thus, if every finite subset A of r is satisfiable, then r
 is satisfiable with respect to a model of denumerable domains. The converse is
 immediate.

 If r is satisfiable, then so are its finite subsets, and hence r is satisfiable with
 respect to some model of denumerable domains. This may be taken as a generali-
 zation of the Skolem-Lowenheim theorem for the first order functional calculus.

 Analogues of Theorems 1, 2, and 3 can be proved for various formal systems
 which differ in one respect or another from the system which we have here con-
 sidered in detail. In the first place, we may add an arbitrary set of constants
 S. as new primitive symbols. In case the set of constants is infinite, we must
 replace the condition of denumerability, in the statement of Theorems 1 and 3,
 by the condition that the domains of the model will have a cardinality not greater
 than that of the set of constants. The proofs for such systems are exactly like
 the ones given here.

 In the second place, the symbols ta0oa) and the axioms of choice (II') may be
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 COMPLETENESS IN THE THEORY OF TYPES 89

 dropped. In this case, we have to complicate the proof by first performing a
 construction which involves forming a sequence of formal systems built up from
 the given one by adjoining certain constants u"', i, j = 1, 2, * , and providing
 suitable axioms for them. The details can be obtained by consulting the paper
 mentioned in footnote 6.

 The axioms of extensionality (lOG) can be dropped if we are willing to admit
 models whose domains contain functions which are regarded as distinct even
 though they have the same value for every argument.

 Finally, the functional abstraction of the present system may either be re-
 placed by set-abstraction or dropped altogether. In the latter case, the constants
 Ilo(oa) must be replaced by a primitive notion of quantifiers.

 Theorem 3 can be applied to throw light on formalized systems of number
 theory.

 The concepts of elementary number theory may be introduced into the pure
 functional calculus of order X by definition, a form particularly suited to the
 present formulation being given in Church.7 Under this approach, the natural
 numbers are identified with certain functions. Alternatively we may choose to
 identify the natural numbers with the individuals making up the domain of type
 t. In such a system, it is convenient to construct an applied calculus by introduc-
 ing the constants 0, and S,& and adding the following formal equivalents of
 Peano's postulates:

 P1. (x,). S,,x = 0,
 P2. (x )(y,) . Sx, = Sty, D x, = y,
 P3. (fo,) . f.0, D . (x4)[fo0x4 D fo0(S ax4)] D (X4)f ox .

 The Peano axioms are generally thought to characterize the number-sequence
 fully in the sense that they form a categorical axiom set any two models for
 which are isomorphic. As Skolem9 points out, however, this condition obtains
 only if "set"-as it appears in the axiom of complete induction (our P3)-is
 interpreted with its standard meaning. Since, however, the scope ("all sets of
 individuals") of the quantifier (fJ,) may vary from one general model to another,10
 it follows that we may expect non-standard models for the Peano axioms.

 This argument may be somewhat clearer if we consider in detail the usual
 proof of the categoricity of Peano's postulates. One easily shows that any model
 for the axioms must contain a sequence of the order-type of the natural numbers
 by considering the individuals 0,, S,,0,, S44(S4o0), ... and using P1 and P2
 to show them distinct and without other predecessors. Then the proof continues
 as follows.

 Suppose that the domain of individuals contained elements other than those
 of this sequence (which we may as well identify with the natural numbers
 themselves). Then consider the class of individuals consisting of just the natural

 9 Thoralf Skolem, Ober einige Grundlagenfragen der Mathematik, Skrifter utgitt av Det
 Norske Videnskaps-Akademi, I, no. 4 (1929), 49 pp.

 10 Here we are identifying a set X of elements of D, with the function (element of D.,)
 which maps every element of X into T and every other element of D, into F.
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 numbers. Since it contains zero (O.) and is closed under the successor function

 (S.,), we infer from the axiom of complete induction (P3) that it contains all
 individuals, contrary to the hypothesis that some individuals were not numbers.

 By examining this proof, we see that we can conclude only that if a general
 model satisfies Peano's axioms and at the same time possesses a domain of
 individuals not isomorphic to the natural numbers, then the domain Dw of sets

 of individuals cannot contain the set consisting of just those individuals which
 are numbers.

 Although Skolem indicates that the meaning of "natural number" is relative
 to the variable meaning of "set" he does not give any example of a non-standard
 number system satisfying alf of Peano's axioms. In two later papers," however,
 he proves that it is impossible to characterize the natural number sequence by
 any denumerable system of axioms formulated within the first order functional
 calculus (to which may be added any set of functional constants denoting numeri-
 cal functions and relations), the individual variables ranging over the "numbers"
 themselves. Skolem makes ingenious use of a theorem on sequences of functions
 (which he had previously proved) to construct, for each set of axioms for the
 number sequence (of the type described above) a set of numerical functions
 which satisfy the axioms, but have a different order type than the natural
 numbers. This result, for axiom systems which do not involve class variables,
 cannot be regarded as being at all paradoxical since the claim had never been
 made that such systems were categorical.

 By appealing to Theorem 3, however, it becomes a simple matter to construct
 a model containing a non-standard number system which will satisfy all of the
 Peano postulates as well as any preassigned set of further axioms (which may
 include constants for special functions as well as constants and variables of
 higher type). We have only to adjoin a new primitive constant u, and add to the

 given set of axioms the infinite list of formulas u, # 0., u, # S&0, uP $
 S,,(S,,O), * # . Since any finite subset of the enlarged system of formulas is
 clearly satisfiable, it follows from theorem that some denumerable model satisfies
 the full set of formulas, and such a model has the properties sought. By adding
 a non-denumerable number of primitive constants vt together with all formulas

 v$' 0 vt' for 2 2, we may even build models for which the Peano axioms are
 valid and which contain a number system having any given cardinal.'2

 These same remarks suffice to show more generally that no mathematical
 axiom system can be genuinely categorical (determine its models to within
 isomorphism) unless it constrains its domain of elements to have some definite

 11 Thoralf Skolem, Jber die Unm6glichkeit einer vollstdindigen Charakterisierung der
 Zahlenreihe mittels eines endlichen Axiomensystems, Norsk matematisk forenings skrifter-

 series 2 no. 10 (1933), pp. 73-82. And Uber die Nicht-charakterisierbarkeit der Zahlenreihe
 mittels endlich oder abzahlbar unendlich viewer Aussagen mit ausschliesslich Zahlenvariablen,
 Fundamenta mathematicae, vol. 23 (1934), pp. 150-161.

 12 A similar result for formulations of arithmetic within the first order functional calculus
 was established by A. Malcev, Untersuchungen aus dem Gebiete der mathematischen Logik,

 Recueil mathematique, n.s. vol. 1 (1936), pp. 323-336. Malcev's method of proof bears a
 certain resemblance to the method used above. I am indebted to Professor Church for
 bringing this paper to my attention. (Added February 14, 1950.)
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 COMPLETENESS IN THE THEORY OF TYPES 91

 finite cardinal number-provided that the logical notions of set and function are
 axiomatized along with the specific mathematical notions.

 The existence of non-standard models satisfying axiom-systems for number
 theory throws new light on the phenomenon of co-inconsistency, first investigated
 by Tarski and Godel. A formal system is w-inconsistent if for some formula
 A., the formulas A.AO4 X A,4(S44O0), Ao&(S&,(S,,O4)) ... , *-X(x,)A.,x. are all prov-
 able. Tarski, and later G6del, showed the existence of consistent systems which
 were w-inconsistent. We can now see that such systems can and must be inter-
 preted as referring to a non-standard number system whose elements include the
 natural numbers as a proper subset.

 It is generally recognized that all theorems of number theory now in the litera-
 ture can be formalized and proved within the functional calculus of order w
 with axioms P1-P3 added. (In fact, much weaker systems suffice.) On the one
 hand, it follows from Theorem 1 that these theorems can be re-interpreted as
 true assertions about a great variety of number-systems other than the natural
 numbers. On the other hand, it follows from the results of G6del4 that there are
 true theorems about the natural numbers which cannot be proved by extant
 methods (consistency assumed).

 Now G6del's proof furnishes certain special formulas which are shown to be
 true but unprovable, but there is no general method indicated for establishing
 that a given theorem cannot be proved from given axioms. From Theorem 1, we
 see that such a method is supplied by the procedure of constructing non-standard
 models for number theory in which "set" and "function" are reinterpreted.
 It, therefore, becomes of practical interest to number-theorists to study the
 structure of such models.

 A detailed investigation of these numerical structures is beyond the scope of
 the present paper. As an example, however, we quote one simple result: Every
 non-standard denumerable model for the Peano axioms has the order type
 w + (w* + w)-q, where ,q is the type of the rationals.

 PRINCETON UNIVERSITY
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