
ADHERE: Automated Detection and Repair of
Intrusive Ads

Yutian Yan
University of Southern California

Los Angeles, CA, USA

yutianya@usc.edu

Yunhui Zheng
IBM T. J. Watson Research Center

Yorktown Heights, NY, USA

zheng16.cs@gmail.com

Xinyue Liu
University at Buffalo, SUNY

Buffalo, NY, USA

xliu234@buffalo.edu

Nenad Medvidovic
University of Southern California

Los Angeles, CA, USA

neno@usc.edu

Weihang Wang
University of Southern California

Los Angeles, CA, USA

weihangw@usc.edu

Abstract—Today, more than 3 million websites rely on online
advertising revenue. Despite the monetary incentives, ads often
frustrate users by disrupting their experience, interrupting content,
and slowing browsing. To improve ad experiences, leading media
associations define Better Ads Standards for ads that are below user
expectations. However, little is known about how well websites
comply with these standards and whether existing approaches
are sufficient for developers to quickly resolve such issues. In
this paper, we propose ADHERE, a technique that can detect
intrusive ads that do not comply with Better Ads Standards and
suggest repair proposals. ADHERE works by first parsing the
initial web page to a DOM tree to search for potential static
ads, and then using mutation observers to monitor and detect
intrusive (dynamic/static) ads on the fly. To handle ads’ volatile
nature, ADHERE includes two detection algorithms for desktop
and mobile ads to identify different ad violations during three
phases of page load events. It recursively applies the detection
algorithms to resolve nested layers of DOM elements inserted by
ad delegations. We evaluate ADHERE on Alexa Top 1 Million
Websites. The results show that ADHERE is effective in detecting
violating ads and suggesting repair proposals. Comparing to the
current available alternative, ADHERE detected intrusive ads on
4,656 more mobile websites and 3,911 more desktop websites, and
improved recall by 16.6% and accuracy by 4.2%.

Index Terms—ad experience, advertising practice, Better Ads
Standards

I. INTRODUCTION

Online advertising has been the most critical revenue stream

for over 3 million websites [1]. Websites are eager to host more

ads and attract more visitors to maximize ad revenue. However,

ads often fail to meet user expectations and easily alienate

visitors [2]. For example, ads that disrupt the user experience,

interrupt content, or slow browsing, can be frustrating and

eventually damage websites’ reputations and financial interests

[3], [4]. While distracting ads can bring in 0.10-0.80 USD per

thousand impressions, they actually cost websites 1.53 USD

due to the downgraded user experience [5].

However, website visitors do not hate all ads. In fact, 83%

of visitors agree, “Not all ads are bad, but I want to filter out

the really obnoxious ones,” and 68% can live with ads as long

as they are not annoying [6]. Fundamentally, undesired third-

party ads exploit the lack of access control across multiple

parties involved in the online advertising system [7]. These

dynamic third-party ads may not expose their behaviors until

fully rendered in browsers. Thus, it’s usually challenging for

web developers to analyze and proactively filter out the bad

ones.

Because this issue affects all stakeholders, significant efforts

from both academia and industry have been made to suppress

or regulate undesired ads [4], [7]–[13]. Among them, the Better
Ads Standards [8] are the first attempt to define undesired ads

at scale. To enhance ad experiences, leading media associations

and corporations, e.g., Google and Interactive Advertising

Bureau, develop the Better Ads Standards that define the

formats of unacceptable ads. Google testers conduct ads audit

manually and release the compliance results in a list named

Ad Experience Report [14]. When violating ads are detected,

the website owners need to repair the issue within 30 days.

Otherwise, Google will block all ads on the entire domain in

the Chrome browser.

The manual audit results from Google have three major

drawbacks. First, the results are limited to only 6.2% among

popular websites (Section III-B). Second, the results do not

pinpoint the code locations of the violating ads or provide

guidance on how to repair them. Instead, developers have to

manually locate and repair the violations. Third, the compliance

audit is manually done by Google testers who conduct ad

reviews periodically. Thus, the audit results may be out of date.

Given the limited coverage, lack of repair support, and delayed

feedback, it’s unclear how well websites comply with these

standards and whether existing approaches are sufficient for

developers to quickly resolve such issues.

In this paper, we investigate the pervasiveness of websites’
compliance with the Better Ads Standards. To the best of our

knowledge, this is the first study to characterize the impact

of intrusive ads on real-world websites. Due to the limited

tooling support, we propose an automatic detection technique

that addresses the following challenges: (1) Advertisements can

486

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00051

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

51

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Key findings and implications.

Findings Implications
1 Google only monitored 6.2% (61,727) of Alexa Top 1 Million Websites on desktop

and 5.4% (54,237) on mobile, with the remaining not reviewed (Section III-B).
The low website coverage calls for measurement tools that enable
detection of violating ads on any website.

2 Since the Better Ads Standards impose more strict requirements for mobile ads,
there are more mobile websites containing violating ads than desktop websites
(Section III-C).

This suggests that different detection algorithms should be
designed for detecting violating ads on mobile vs. desktop.

3 Due to failing to fix violations on time, Google Chrome has blocked ads on 228
websites for more than three months, and 77 have been blocked for over one year
(Section III-D1).

Since majority of these websites are actively maintained, such
slow reactions may indicate a lack of knowledge on how to fix
them.

4 Compared to the Google audit tool, ADHERE detected 4,656 more mobile websites
and 3,911 more desktop websites with violating ads on the top one million websites
(AdHere: 10,141, Google: 1,574) (Section V-A1).

This large discrepancy is caused by the facts that (1) ADHERE

is not limited to selected websites and (2) ADHERE has a better
recall (Section V-A2).

5 ADHERE achieved good recalls in identifying the top three popular types. Pop-up:
87.1%/80.0% (D/M), Large Sticky: 88.0%/82.5% (D/M), and Density Higher Than
30%: 88.5% (M) (Section V-A2).

These violations can be the result of bad coding practices or
incorrect configurations, suggesting that more testing efforts
should be spent on these types.

6 Violations on 97 websites have been fixed. Among them, 93 completely removed
the ad container, while only four modified the ad container’ attributes to comply
with the standards (Section V-A3).

ADHERE suggested that all violations on the 97 websites can be
fixed by modifying the ad attributes and the ads do not need to
be removed.

Availability Google Ad Exp Report AdHere
Who Initiate the Scan Google auditors Website developers
Website Coverage Selective (< 7% of top 1M) Any
Result Availability Unknown until next scan Immediately

Developer Assistance
Auditing Method Manual Automated

Assisting Violation
Identification

1) URL
2) Screenshots/Videos (optional)

1) URL
2) Screenshots
3) Lines of code of the ads

Fixing Assistance None Fix Suggestions
Ad-network to Avoid None Provided

Impact of Violations
Violation Found All ads on the same website will

be blocked in Chrome
No impact

Developer Actions Manually locate and fix
violations; wait for next audit

Fix violations before all ads on
the website got blocked

Fig. 1: Google Ad Experience Report vs. ADHERE.

be fully dynamic where the structure of an ad is unknown until

runtime, making it difficult to identify an ad and differentiate

it from other elements. (2) Dynamically loaded ads can be

highly volatile (e.g., first appear and then disappear at any

time), which makes it difficult to localize dynamic ads in the

source code. (3) Advertisements can be initially preloaded and

later have their properties modified during runtime, thus a pure

static/dynamic analysis alone does not suffice.

To this end, we propose ADHERE, a technique that can

automatically detect violating ads and suggest repair proposals.

The design of ADHERE is based on a combination of static

and dynamic analyses. It works by first parsing the initial web

page to a DOM tree to search for potential static ads, and

then using mutation observers to monitor and detect intrusive

(dynamic/static) ads on the fly. To handle ads’ volatile nature,

ADHERE includes two detection algorithms for desktop and

mobile ads to identify different ad violations during three

phases of page load events. Our approach recursively applies the

detection algorithms to resolve nested layers of DOM elements

inserted by ad delegations. We evaluate ADHERE on Alexa

Top 1 Million Websites to detect their compliance with the

Better Ads Standards. ADHERE detected violating ads on 5,540

mobile websites and 4,601 desktop websites. Comparing to the

currently available alternative, ADHERE detected violations on

4,656 more mobile websites and 3,911 more desktop websites

and improved recall (by 16.6%) and accuracy (by 4.2%). Since

ADHERE shares some similar functionalities with Google Ad

Experience Report, we summarize its main advantages in Fig. 1.

In summary, this paper makes the following contributions:

• We conduct a preliminary study using the manual audit

results from Google on 1 million websites to understand

the landscape of violating ads on real-world websites.

This study motivates a technique that can help developers

of any website detect and repair violating ads. The key

results are summarized in Table I (Rows 1-3).

• We propose ADHERE for automatically detecting violating

ads and suggesting repair proposals. We address the

challenges entailed by no prior knowledge of ads’ DOM

structures, the volatile nature of dynamic ads, and nested

layers of DOM elements inserted by multiple layers of

ad delegations.

• We evaluate ADHERE on Alexa Top 1 Million Websites.

ADHERE is effective in detecting violating ads and

suggesting repair proposals. Comparing to the manual

audit results from Google, ADHERE detected violating ads

on 4,656 more mobile websites and 3,911 more desktop

websites, and improved recall by 16.6% and accuracy by

4.2%. It also has an acceptable overhead of 44%. We

highlight the key results in Table I (Rows 4-6).

II. BACKGROUND

A. The Online Advertising Ecosystem

Most ads rendered on websites are actually not owned or

hosted by the websites. Instead, multiple parties including

websites, advertisers, and website visitors are connected by

multiple gigantic ad networks. They work together to deliver

ads in a dynamic and targeted way. Fig. 2 shows the entities in

the online advertising ecosystem and the procedure of how an

ad is delivered. 1 Websites preallocate slots for advertisements

by including bootstrapping JavaScript ad libraries provided by

ad networks. When a user visits a website, these snippets

487

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Online ad ecosystem.

are executed in the user’s browser. 2 These ad libraries

collect and send the user/website profiles to the real-time

bidding platform. 3 User profiles are further shared with

participating ad networks and advertisers before a real-time

auction is conducted. 4 Advertisers evaluate its value and bid

for a particular impression. 5 Additional JavaScript snippets

are returned to the end user and eventually load the actual ad

content (e.g., videos, images or texts) from the auction winner.

B. The Better Ads Standards

To enhance user experiences with online ads, leading media

associations and corporations (including Google, Microsoft,

Interactive Advertising Bureau, etc.) conducted a study with

66,000 users to identify the least favorable ad experiences and

developed the Better Ads Standards (as shown in Fig. 3), which

define four unacceptable desktop ads and eight unacceptable

mobile ads:

Pop-up Ads (D-1 and M-1) usually appear to deliberately

block the main content of a web page. They may include a

forced countdown that requires users to wait.

Auto-playing Video Ads with Sound (D-2 and M-2)
automatically play disruptive videos and music. However, ads

requiring users to activate the sound are deemed acceptable.

Large Sticky Ads (D-3 and M-3) remain constant at the

bottom or the side edge. Such ads can continuously obstruct

over 30% of the screen regardless of where the user is on the

page.

Prestitial Ads (D-4 and M-4) appear before the main content

is loaded. Users are required to wait before ads can be closed.

It disrupts the navigation hence is rated as distracting ads.

Ad Density Higher than 30% (M-5) of a page are

considered intrusive, where the density is measured by dividing

the sum of all ad heights by the total height of the main content

of the page.

Full-screen Scrollover Ads (M-6) cover the entire page

and force users to scroll through the ad before viewing the

main content, which can be disorienting to users.

Flashing Animated Ads (M-7) rapidly flash with alternating

backgrounds, text, or colors, which are highly distracting and

aggravating. Animated ads that do not flash are considered

acceptable.

Postitial Ads with Countdown (M-8) appear after a link

click and force a user to wait before redirecting to another

page, which disrupt users’ navigation flow.

III. PRELIMINARY COMPLIANCE STUDY

The manual audit results from Google have three major

limitations: (1) the results are limited to selective websites; (2)

the results do not pinpoint violating ads location nor provide

repair support; (3) the audit was performed manually and thus

it cannot provide real-time feedback.

To investigate the necessity of an automated detection and

repair technique, we perform a preliminary study using the

Google manual audit results and analyze the audit results’

website coverage, prevalence of violating ads, and common

repair practice:

• RQ1 – Website Coverage: How many websites are

manually reviewed by Google testers?

• RQ2 – Violation Significance: How many websites

contain ads that fail to meet the Better Ads Standards?

• RQ3 – Repair Time: How long does it take to repair

violating ads before blocking all ads on the entire domain?

Summary Results. Google’s manual audit results are only

available for a small number of websites. The Google audit tool

reviewed fewer websites among lower-ranked websites where

there are more websites failed to comply with the standards.

These results motivate the design of a detection technique that

can be used by developers of any website. Moreover, there

were 32.5% of websites failed to react to the audit result and

got punished to be blocked for more than a year. Slow response

in reacting to ad filtering may indicate the audit is out of date

or developers lack knowledge on how to repair them. This

calls for the need of an automated detector that can provide

real-time repair support.

A. Methodology

By running Google Ad Experience Report, we can obtain

the ad experience ratings of a website for both desktop web

and mobile web. Fig. 4 shows the details of the ad experience

ratings of an example website, autopartspro.co.uk. Specifically,

the ad experience ratings contain the following information: (1)

the Better Ads status (PASSING, FAILING, or UNKNOWN)

(2) the timestamp the website was last reviewed; (3) the ad

filtering status (ON/OFF); (4) the timestamp the website’s ad

filtering began, if the filter is ON; and (5) a link to the ad

experience report.

We collect ad experience ratings for the Alexa Top 1 Million

Websites every day for over four months. We focus on “the

Better Ad status”, “the ad filtering status”, and “the timestamp

the website was reviewed” to measure the website coverage

and analyze the filtering enforcement time when violations are

not resolved within 30 days. Note that the ad experience report

does not include details about the location of the violations

in source code, how to fix them, or which ad networks are

involved.

B. RQ1: Website Coverage

Among Alexa Top 1 Million Websites, Google only moni-

tored 61,727 websites (6.2%) for their desktop versions and

54,237 (5.4%) for the mobile versions. The Better Ad status

488

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

D-1:
Pop-up Ads

D-2:
Auto-playing Video

Ads with Sound

Ad

D-4:
Prestitial Ads with

Countdown

D-3:
Large Sticky Ads

M-1:
Pop-up Ads

Ad Ad

M-4:
Prestitial Ads

Ad

M-5:
Ad Density

Higher than 30%

Ad

M-7:
Flashing Ads

Ad

M-2:
Auto-playing Ads

with Sound

AdAd

M-8:
Posititial Ads

with countdown

Ad

M-6:
Full-screen

Scrollover Ads

Ad

M-3:
Large Sticky

Ads

Ad

Ad

AAA

(a) Desktop Ad Experience (b) Mobile Ad Experience

Fig. 3: The Better Ads Standards. Four desktop violating ad types and eight mobile ad types are defined.

1 { "reviewedSite": "autopartspro.co.uk",
2 "mobileSummary": {
3 "betterAdsStatus": "FAILING",
4 "lastChangeTime":

"2021-06-19T11:02:13.326467Z",
5 "filterStatus": "ON",
6 "enforcementTime":

"2021-06-19T11:02:13.135624Z",
7 "reportUrl":

"https://www.google.com/webmasters/
tools/ad-experience-mobile?siteUrl=
autopartspro.co.uk"},

8 "desktopSummary": {
9 "betterAdsStatus": "PASSING",

10 "lastChangeTime":
"2021-05-26T04:32:24.552326Z",

11 "filterStatus": "OFF",
12 "reportUrl":

"https://www.google.com/webmasters/
tools/ad-experience-desktop?siteUrl=
autopartspro.co.uk"}}

Fig. 4: Ad experience report for autopartspro.co.uk. The full

report (“reportUrl”) is not publicly accessible.

of the remaining sites are UNKNOWN, indicating that they are

not reviewed.

Takeaway 1: The low coverage of Google’s manual audit

results calls for a detection technique that can be used by

developers of any website for detecting violating ads on their

websites.

C. RQ2: Violation Significance

Among the websites reviewed by Google, the average number

of mobile websites failed daily is 884 while the desktop version

is 690. There were 1,112 mobile websites and 874 desktop

websites having the FAILING status at least once during the

Fig. 5: FAILING and PASSING websites count. The average

number of FAILING websites: 884 on mobile, 690 on desktop;

PASSING websites: 53,353 on mobile, 61,025 on desktop.

study. Moreover, the average numbers of websites passed daily

are 53,353 on mobile and 61,025 on desktop. Fig. 5 shows the

number of sites with PASSING status and FAILING status

from April 13, 2019 to August 18, 2019.

1) Rank Distribution of Websites Displayed Violating Ads:
To further investigate the popularity of the websites that fail

the test, we study the PASSING and FAILING websites based

on their Alexa rankings and present the distribution and failing

ratio in Fig. 6. The failing ratio is the ratio of the number of

FAILING websites to the number of websites being monitored

(i.e., the sum of FAILING and PASSING websites).

The rank distribution shows that more websites in the top

100K have been monitored and classified as FAILING than

those in the other 100K segments. However, if we look at the

failing ratios, the percentage of FAILING websites in websites

ranked between 100K and 400K is actually higher than that in

top 100K websites.

Takeaway 2: The higher failing ratio in lower-ranked

websites and the fact that Google reviewed fewer websites

among lower-ranked segments further motivate a detection

489

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Ranking distribution of FAILING and PASSING websites and the failing ratios. The x-axis is Alexa ranking 100K,

200K, ..., 1,000K. Each box and its whiskers represent the five-number summary of the website counts within each ranking

range: the minimum, first quartile, median (shown above each bar), third quartile, and maximum.

approach that can be used by websites of any ranking.

Takeaway 3: In general, we observed more violations on

mobile than desktop. As the Better Ads Standards impose more

strict requirements for mobile platforms, different detection

algorithms should be designed for mobile vs. desktop.

Fig. 7: Violating ads repair time. The x-axis represents the

number of days to repair violations. The y-axis represents the

number of websites having the same repair time.

D. RQ3: Repair Time

During the four-month study, 109 mobile websites and

43 desktop websites successfully repaired the violating ads.

Among these fixes, 11 websites have been fixed for both their

desktop and mobile versions. Without loss of generality, we

approximate the repair time as the duration between the first

time a website failed the daily test (i.e., rated as FAILING)

and the first subsequent day the website passed the daily

test (i.e., rated as PASSING). Fig. 7 shows the fix time on

these FAILING websites. The result shows that on average,

it took 15.94 days to repair violating ads on mobile and 12.9

days to repair on desktop, respectively. Note that the numbers

reported in Fig. 7 exclude websites that were initially marked

as FAILING since the repair time is unknown if a website

failed the audit before our study.

1) Ad Filtering Enforcement Time: Once a website’s Better

Ad status is marked as FAILING by Google, the website

owner will be asked to repair all violating ads within 30 days.

Otherwise, Google Chrome will regardless filter out all ads

on this website’s entire domain. This is when the ad filtering

enforcement time starts ticking [15].

Fig. 9 presents the result of the ad filtering enforcement time.

The figure shows that 156 mobile websites and 81 desktop

websites have their ads been filtered by the Chrome browser.

228 of the 237 websites (96.2%) have been filtered for more

than 3 months. 77 websites (32.5%) were being filtered for

over one year. On average, the ad filtering enforcement time

for both mobile and desktop platforms is around 7 months.

We manually inspected these 77 websites and found that 58

websites (75.3%) were still actively maintained after Google

blocked their ads.

Takeaway 4: Slow response in reacting to ad filtering may

indicate the audit is out of date or developers lack techniques

on how to repair them, which calls for the need of an automated

detector that can provide real-time repair support.

IV. DESIGN OF ADHERE

In order to achieve automated detection and repair support,

ADHERE needs to handle several technical challenges:

• Advertisements can be either partially preloaded or fully

dynamic that only initiates at runtime, thus the detection

should include both static and dynamic analyses.

• Dynamically loaded ads can be highly volatile, so the

detection algorithm should capture ads-related elements

at different stages of page load events.

• Advertisements may include multiple layers of delegation

that creates nested layers of DOM elements, making it

difficult to locate the ad in the source code.

Fig. 8 presents the overview of ADHERE, which includes

three steps:

1 Collecting Website Status. We collect the Better Ads

Standards compliance status for one million websites each day.

The status results will be used to identify developers’ fixes

(Sec. IV-A).

490

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Overview of ADHERE.

Fig. 9: Ad filtering enforcement time on websites marked

FAILING longer than 30 days. The average enforcement time

is 210.38/214.70 (mobile/desktop) days.

2 Pinpointing Violating Ads. When the ad status changes

from PASSING to FAILING, ADHERE analyzes the pages

and looks for violating ads. ADHERE detects ads exhibiting

distracting behaviors per the Standards (Sec. IV-B). This

heuristic-based approach is needed to differentiate intrusive

from non-intrusive ads.

3 Suggesting Repair Proposals. When the ad status re-

stores from FAILING to PASSING, we assume the violations

are fixed. ADHERE compares the PASSING DOM tree with

and the FAILING DOM tree to learn fixes from developers.

After aggregating the fixes, for newly detected violations,

ADHERE suggests either modifying ad attributes or removing

them completely (Sec. IV-C).

We elaborate on each of the steps below.

A. Collecting Website Status

The goal of the ad status collection is to detect new violations

and discover fixes that ADHERE can learn from. We follow

the Better Ads Standards and scan websites every day.

When new violating ads are found, ADHERE tries to locate

them using the algorithm presented in Sec. IV-B. If previously

FAILING ads pass the compliance test, ADHERE infers how

the developers fixed them and records the patterns (Sec. IV-C).

To compare the effectiveness of ADHERE with Google Ad

Experience Report, we also collected the audit results from

Google and manually collected the ground truth of 1,000

websites.

B. Pinpointing Violating Ads

Automatically detecting violating ads on a website is

challenging because the modern websites are highly dynamic.

Some ads may only appear for a few seconds and then disappear.

For example, a prestitial ad with countdown may appear before

the page is loaded and close itself after a few seconds. ADHERE

may miss such ads if analyzing the page after all contents are

fully loaded. On the other hand, if ADHERE retrieves the page

before fully loaded, it may get a different DOM tree and thus

won’t see the dynamically created structures. Thus, we propose

a run-time testing approach and devise two algorithms for the

desktop and mobile platforms.

1) Detecting Desktop Violating Ad: Given a desktop website,

we visit the homepage and all sub pages marked as FAILING,

identify violating ads, and download the subtrees of the

violating ads. As violating ads may load, render and disappear

in different phases, our detection algorithms are based on three

critical events:

1) DOMContentLoaded. This event fires when the DOM

tree is fully loaded. Note that when this event occurs,

external resources like images, stylesheets and subframes

may be not yet loaded. Hence, it is an important event

to detect violations (e.g. prestitial ads) that occur prior to

the main content.

2) Load. This event is fired when the page is fully

loaded, including all dependent external resources such as

stylesheets and images. Several types of violating ads can

be detected after the load event is fired, such as pop-up

ads and large sticky ads.

3) Beforeunload. The beforeunload event occurs when

the user is leaving the page and the page is about to be

unloaded. This event can be used to identify postitial ads

that appear after a link click and postpone the redirection.

Fig. 10 outlines the procedure for desktop violating ads

detection, which looks for four types of violating ads in three

phases:

491

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Desktop violating ad detection.

• Phase I. We wait until the DOM tree is loaded. Once

the DOMContentLoaded event occurs, the detection

algorithm looks for the Prestitial Ads with Countdown
(D-4).

• Phase II. When the load event fires, the page including

all of the external resources is fully loaded. On this event,

we look for Pop-up Ads (D-1) and Auto-playing Video
Ads with Sound (D-2).

• Phase III. As some ads appear only when users scroll on

the page, we programmatically scroll to the end and then

scroll back to the top. By doing so, we detect Pop-up
Ads (D-1), Auto-playing Video Ads with Sound (D-2), and

Large Sticky Ads (D-3).
In the following paragraphs, we will discuss details about

detecting each type of violating ads.

• D-1: Pop-up Ads. Pop-up ads are implemented by

setting CSS ‘position’ attribute to ‘absolute’ or

‘fixed’, and assigning an unsigned integer or ‘auto’ to

‘z-index’. The ad is considered violating only if the ad

covers the web page.

• D-2: Auto-playing Video Ads with Sound. Video ads can

be shown on a web page by using <video>, <embed>,

or <object> tags. A <video> tag with attribute

‘autoplay’ set but without setting ‘muted’ attribute

will make the ad disturbing. Similarly, tags like <embed
... autoplay=‘true’ volume=‘X’> (X is a pos-

itive integer) can also introduce violating ads. Moreover,

an <object> tag without ‘play=false’ will make

the ad violating.

• D-3: Large Sticky Ads. Large ads can be detected by

measuring the actual heights of DOM elements. The ad

is considered a Large ad if the ‘height’ exceeds 30%

of the actual page. Ads are Sticky when CSS attribute

‘position’ is set to ‘absolute’ or ‘fixed’, to make

ads won’t move when scrolling.

• D-4: Prestitial Ads with Countdown. These ads behave

like Pop-up Ads but appear before the page load. Hence,

we detect them before page load in a similar way to

D-1. We use Mutation Observer APIs [16] to detect the

countdown.

2) Detecting Mobile Violating Ad: The mobile platform has

more types of violating ads than the desktop platform. Three

out of four desktop types (D-1, D-2, and D-3) exist on the

mobile platform (M-1, M-2, and M-3). Note that the M-4 is

simply the D-4 without a countdown. Additionally, the mobile

platform has 4 new types: M-5, M-6, M-7, and M-8. For the

types that also exist for desktop (M-1, M-2, M-3, and M-4),

the detection algorithm for mobile is similar to the one for

desktop. For the remaining four types (M-5, M-6, M-7, and

M-8), they are handled as follows.

• M-5: Ad Density Higher Than 30% exhibits similar

behaviors like Large ads. Checking if the total height of

all ads exceeds 30% of actual page can find them.

• M-6: Full-screen Scrollover Ads have two features, Full-
screen and Scrollover. Full-screen means the ad covers

the entire screen, which can be detected by checking the

‘height’ attribute. Scrollover property is measured by

simulating page scroll down and then up. When a full-

screen-size DOM element first exhibits Sticky feature and

then disappears, the element is considered to be Scrollover.

• M-7: Flashing Animated Ads can be detected with the

help of a Python3 library named Pillow [17]. We extract

the frames from a GIF file. If it has more than one frame

and loops the frames, it is considered Animated. For an

Animated GIF, if each frame lasts for a very short time,

we conclude this GIF is Flashing.

• M-8: Postitial Ads with Countdown appear after a

link click. Before the redirection, such ads can be

detected by identifying features Countdown and Postitial.
Similar to D-4, we use Mutation Observers to detect the

Countdown feature. We identify Postitial feature after the

beforeunload event is fired.

Once violations are found, we use their XPaths to infer

participating ad networks. In particular, we check the ads and

their ancestors to extract links that containing ad network

information, which can be obtained from attribute ‘href’

or ‘src’. For Pop-up Ads and Large Sticky Ads that can

have complex DOM structures with distinctive attributes in

492

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

their siblings, we also extract links from the siblings and

siblings’ ancestors. Additionally, we capture the screenshots

of the violating page to further assist developers in locating

violations.

C. Suggesting Repair Proposals

1) Identifying How Developers Repair: When a previously

FAILING website passes the compliance test, ADHERE tests

the website again to find out the changes developers applied.

Specifically, ADHERE locates the ads using the XPath obtained

in the previous phase. Then, it compares the DOM structures

of the PASSING and FAILING versions. As illustrated in

Fig. 11, we observed developers either modified the attributes

of the violating ads or simply removed them.

DOM

<head> <body>

… Ad …

DOM Tree (Before Fix)

(a) Fix 1: Removed

Ad

DOM

<head> <body>

… …

DOM Tree (After Fix)

DOM

<head> <body>

… Ad …

DOM Tree (Before Fix)

(b) Fix 2: Modified

DOM

<head> <body>

… …

DOM Tree (After Fix)

Ad Ad

Ad

Fig. 11: Two types of fixes: (a) violating ads are removed; (b)

ad container’s attributes are modified to comply with standards.

For example, Fig. 12 shows a repair found on the mobile

version of getsongbpm.com. The screenshots in Fig. 12(a)

shows that a pop-up ad on the page is replaced with an image

ad. Fig. 12(b) and Fig. 12(c) are the code snippets of the

pop-up ad and the image ad, respectively. At line 5695, the

z-index of the ad container is a positive integer, indicating

the content inside is pop-up content. After the fix, this pop-up

ad is replaced with an image ad using the default z-index
(line 4772). So, this image ad stays in the default layer and

does not cover other contents.

By replacing the ad containers, modifying HTML document

structures, and loading different scripts from the ad networks,

this fix introduced 1,191 lines of code changes. The complete

source code of this example can be found in [18].

2) Suggesting Repair: For violations, ADHERE suggests

either modifying the ad container’s attributes or removing the

ad container. Because removing ads completely will lower the

4754 <div class="leadboard addmt">...
4772 <div id="google_ads_iframe…_300x250_1_container_">...
4774 <iframe id="google_ads_iframe..._300x250_1" width="300" height="250">...
5587 <div id="google_image_div">...
5594

(c) HTML code snippet of the fixed image ad (observed on 07/21/2019)

5695 <div id="aic-root-container-250" style="... z-index: 2147483647; ">...
5697 <iframe id="aic-frame-66"><html><body>...
5930 <div id="ad_unit"><div class="GoogleActiveViewElement">...
5941 ...

(b) HTML code snippet of the pop-up ad (observed on 06/20/2019)

(a) Screenshots: the pop-up violating ad is replaced with an image ad

Violating
pop-up is fixed

Fig. 12: Fix example on getsongbpm.com.

ad income, it’s the fallback option and thus is omitted. Since

developers commonly convert websites from one platform

to another, ADHERE defines fix suggestion rules that work

for both desktop and mobile. Our fix suggestion rules are

derived from the Better Ads Standards, and we list them in

Table II. Although we collect real-world fix attempts, the

repair suggestion rules are not derived from previous fixes.

The goal of collecting existing fixes is to determine if a repair

proposal corresponds to the actual repair that makes the website

compliant. Moreover, ADHERE provides the repair suggestions

for developers but does not repair ad violations automatically.

TABLE II: Fix suggestion rules.

Ads Type Fix Suggestion

Pop-up Ads
• (D/M) Set ‘position’ attribute to ‘relative’ or ‘static’.
• (D/M) Set ‘z-index’ attribute to 0 or lower.
• (D/M) Remove the countdown that forces users to stay on the page.

Prestitial Ads
• (M) Set the ‘z-index’ attribute to 0 or lower to avoid blocking users from

viewing the main content.
• (D/M) Remove the countdown so users can immediately close the ad.

Ad Density
Higher Than 30%

• (M) Increase the height of the main content portion of the web page to
reduce the density.

• (M) Remove parts of the ads to reduce the total height of these ads to less
than 30% of the main content.

Flashing
Animated Ads

• (M) Modify ads to avoid rapidly changing background, highly aggravating
texts, or colors.

Auto-playing Video
Ads with Sound

• (D/M) Add ‘muted’ attribute, or remove ‘autoplay’ attribute.

Postitial Ads
with Countdown

• (M) Remove the countdown.

Full-screen
Scrollover Ad

• (M) Set ‘z-index’ attribute to 0 or lower.
• (M) Set ‘position’ attribute to ‘relative’ or ‘static’.

Large
Sticky Ads

• (D/M) Set ‘position’ attribute to ‘relative’ or ‘static’.
• (D/M) Shrink the ad size until the ad is less than 30% of the screen’s real

estate.
• “D”/“M”: the suggestion is for Desktop and Mobile platform respectively

V. EVALUATION

ADHERE is built atop Selenium [19] and ChromeDriver [20].

For each website, we visited the desktop version using Headless

Chrome [21] with all ad blocking features disabled, and used

ChromeDriver to visit the mobile version by simulating a

Samsung Galaxy S5 phone. In case a legitimate page behaves

493

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

similarly as one with violating ads, we used EasyList [22], a

blacklist maintained and used by a set of popular ad blockers,

to double check if it really contains the ads and eliminated

false positives. The experiments were done on a computer with

Intel i7 CPU and 16 GB memory.

A. Effectiveness

1) Prevalence: We run ADHERE on Alexa Top 1 Million

Websites to detect the prevalence of violating ads. The

result shows that ADHERE detected violating ads on 5,540

mobile websites and 4,601 desktop websites. Compared to

Google Ad Experience Report, ADHERE detected 4,656 more

mobile websites and 3,911 more desktop websites containing

violating ads. Moreover, violating ads on mobile websites were

more frequently observed. This result is consistent with the

preliminary study.

TABLE III: ADHERE per-ad-type results on 10,533 ads.

Ad Type Mobile Desktop
Pop-up Ads 740 (12.6%) 1,685 (36.2%)
Auto-playing Video Ads with Sound 20 (0.3%) 23 (0.5%)
Prestitial Ads (w/ Countdown for Desktop) 82 (1.4%) 63 (1.4%)
Large Sticky Ads 1,647 (28.0%) 2,818 (61.9%)
Postitial Ads w/ Countdown 0 (0%) N/A
Ad Density Higher Than 30% 2,358 (40.1%) N/A
Full-screen Scrollover Ads 34 (0.6%) N/A
Flashing Animated Ads 1,003 (17.0%) N/A
Total* 5,884 4,649
*: Some websites contain multiple types of ads, so the number of total

websites is larger than websites containing violating ads in Section V-A1.

Table III shows the number of websites that contain

ADHERE-found violating ads per the Better Ads Standards.

ADHERE considers the existence of a violation type if ads of

that kind appeared on a website at least once. As the table

shows, Large Sticky Ads, Ad Density Higher Than 30%, and

Flashing Animated Ads are the most prevalent violating types.

ADHERE detected a few instances of Auto-playing Video Ads

with Sound, Prestitial Ads, and Full-screen Scrollover Ads. We

did not observe the Postitial Ads with Countdown.
2) Comparisons with the Google Ad Experience Report:

Similar to other defect detection works, due to the lack of

the oracle, it’s infeasible to automatically collect the ground

truth for all 1 million websites used in the preliminary

study (Section III). Therefore, we follow the Random Under-

Sampling (RUS) approach [23] and selected 1,000 websites

from the ones audited by Google from July 5th, 2021 to

July 14th, 2021. We constructed a balanced set of samples

according to Google’s audit outcomes: 250 FAILING desktop

websites, 250 PASSING desktop websites, 250 FAILING
mobile websites, and 250 PASSING mobile websites. We

manually analyzed them, obtained the ground truth, and then

computed performance metrics [24] to compare ADHERE and

the Google Ad Experience Report.

For each website, we run two rounds of independent

inspections: (1) We open a fresh Chrome in incognito mode

to avoid side effects. (2) We visit the homepage and look for

Prestial Ads before the page is loaded. (3) When fully loaded,

we verify if violating ads exist. (4) We scroll to the bottom

and back to the top to check violations that may appear while

scrolling (e.g., Large Sticky Ads). Additionally, we inspect the

CSS to verify compliance with numerical constraints (e.g., ads

covering 30% of the screen). (5) We click 10 links (if any) on

the homepage from left to right, top to bottom. Then, we repeat

(2)-(4) for these pages. A website is considered FAILING if

violations were found in both rounds.

Based on the collected ground truth, we compute the

confusion matrix and the precision, recall, accuracy, and F1-

score metrics of the two detectors, ADHERE and the Google

audit tool. Specifically, positive means that a website contains

at least one intrusive ad; negative represents a website with

no intrusive ads. True positive (TP) is a test result where the

detector correctly detects the presence of violating ads; true

negative (TN) is a test result that the detector correctly indicates

the absence of violating ads; false positive (FP) means that the

detector wrongly identifies that violating ads are present; false

negative (FN) means that the detector wrongly indicates that

violating ads are absent. Precision, or positive predictive value

(PPV), is the number of true positives (correctly identified

websites containing intrusive ads) divided by the number of

all raised alarms (correct or not); negative predictive value

(NPV) is the number of true negatives divided by the number

of websites that no violating ads were found. Recall, or true

positive rate (TPR), is the number of true positives divided

by the number of all websites with violations in the dataset;

true negative rate (TNR) is the number of true negatives

divided by the number of all websites with no violations.

Accuracy is the number of true predictions (i.e., the sum of

true positives and true negatives) divided by the number of

all websites in the dataset. F1-score is the harmonic mean of

precision and recall. That is, Prec= TP
TP+FP , NPV= TN

TN+FN , Rec=

TP
TP+FN , TNR= TN

TN+FP , Acc= TP+TN
TP+TN+FP+FN , F1= 2∗Prec∗Rec

Prec+Rec .

TABLE IV: Confusion matrices.

Google Predicted ADHERE
Predicted

Negative Positive Negative Positive

Actual
Negative 344 130

Actual
Negative 299 175

Positive 156 370 Positive 69 457

Precision 74.0% Precision 72.3%

NPV 68.8% NPV 81.3%

Recall 70.3% Recall 86.9%

TNR 72.6% TNR 63.1%

Accuracy 71.4% Accuracy 75.6%

F1-score 72.1% F1-score 78.9%

Table IV shows the confusion matrices and the performance

metrics result. ADHERE achieves 72.3% precision, 81.3% NPV,

86.9% recall, 63.1% TNR, 75.6% accuracy, and 78.9% F1-

score, while the Google audit tool achieves 74.0% precision,

68.8% NPV, 70.3% recall, 72.6% TNR, 71.4% accuracy, and

72.1% F1-score. Our inspection of the 1,000 websites finds that

ADHERE has a better recall and NPV, outperforming the Google

audit tool by 16.6% and 12.5% respectively, i.e., AdHere missed

fewer websites with intrusive ads. While AdHere has slightly

lower precision and a lower true negative rate, the recall and

NPV are more relevant as these rates measure how often

our technique detects intrusive ads. ADHERE also achieves

higher accuracy and F1-score compared to Google’s tool. These

494

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

metrics show that ADHERE can more accurately identify more

violations and help developers prevent Google’s site-wide ad

blocking.

We are also interested in comparing per-ad-type results.

However, such information is not publicly accessible in the

Google audit results and is only visible to website owners. We

were not able to present a head-to-head breakdown comparison.

Instead, we only discuss the per-type performance of ADHERE.

Different from the confusion matrices discussed above, if a

type of violation occurred on the web page during the manual

inspection process is the same type of violation detected by

ADHERE, we count it as a true positive for this ad type and

this website. If the violation type doesn’t match, we say it’s a

false positive.

TABLE V: ADHERE per-ad-type results on 1,000 websites.

Ad Type TP FP TN FN Precision Recall Accuracy F1-score
D-1: Pop 101 45 0 15 69.2% 87.1% 62.7% 77.1%
D-2: Auto 7 0 0 1 100% 87.5% 87.5% 93.3%
D-3: Sticky 146 61 0 20 70.5% 88.0% 64.3% 78.3%
D-4: Prestitial 0 0 0 5 N/A 0% 0% N/A
M-1: Pop 80 34 0 20 70.2% 80.0% 59.7% 74.8%
M-2: Auto 5 0 0 1 100% 83.3% 83.3% 90.9%
M-3: Sticky 104 61 0 22 63.0% 82.5% 55.6% 71.4%
M-4: Prestitial 1 0 0 4 100% 20.0% 20.0% 33.3%
M-5: 30% 115 42 0 15 73.2% 88.5% 66.9% 80.1%
M-6: Full-screen 2 0 0 3 100% 40.0% 40.0% 57.1%
M-7: Flashing 31 0 0 22 100% 58.5% 58.5% 73.8%
M-8: Posititial 0 0 0 2 N/A 0% 0% N/A

According to the per-type result shown in Table V, ADHERE

performed well at identifying the top three common ad types

(according to Table III). The recall for Pop-up Ads is 87.1%

(desktop) / 80.0% (mobile). The recall of detecting Large Sticky

Ads is 88.0% (desktop) / 82.5% (mobile). For Ads Density

Higher Than 30%, which are treated as violations on the mobile

platform, the recall is 88.5%.

ADHERE missed the detection of some ads, e.g., the Flashing

Animated Ads. As shown in Table V, our approach detected

31 websites that truly included Flashing Animated Ads but

missed 22 websites with such ads. Flashing Animated Ads

animate and flash with quickly changing backgrounds, text, or

colors. ADHERE identifies such ads by looking for GIFs with

rapid frame alternation (<0.25s). However, ADHERE missed

animated ads that were implemented using JavaScript, and we

plan to support JavaScript animations in the future.

To ensure that the dataset on which recall was manually

computed is available for replication by other researchers, we

provide the raw data and the confusion matrices for each label

and each ad type in our dataset [18].
3) Repair Proposal Result: Among the websites that have

been fixed (109 on mobile and 43 on desktop) during the

study, we observed that 55 sites were either not accessible

or did not show violating ads (36 for mobile and 19 for

desktop). ADHERE removed these sites and analyzed the fix

approaches for the remaining sites. In total, only 4 websites

(2 on mobile and 2 on desktop) were fixed by changing

the ad containers’ attributes to comply with the Standards,

while the other 93 (71 on mobile and 22 on desktop) were

fixed by completely removing the ad containers. The 2

mobile websites being fixed by modifying ad attributes were

getsongbpm.com and arabpornsex.com. The 2 desktop websites

were portalpopline.com.br and simply-hentai.com.

All 97 fixes are consistent with the fix suggested by ADHERE.

Specifically, 5 websites fixed Prestitial Ads by removing

them. Of the 14 websites having Pop-up Ads, 11 websites

removed the ads, and 3 websites modified the ‘position’

and ‘z-index’ attributes which is consistent with the fix

solutions recommended by ADHERE. 43 websites fixed Ad

Density Higher Than 30% by removing it. Finally, 30 websites

removed Large Sticky Ads, and 1 website fixed such ads

by reducing the ad size. According to fixes recommended by

ADHERE, all 97 ads can be fixed by modifying the ad attributes

and they do not need to be removed.

B. Efficiency

Fig. 13: Web page load time before (avg: 9.019, st: 5.152) and

after (avg: 13.024, st: 6.398) ADHERE is applied.

In order to explore the overhead of ADHERE, we measure the

page load time with and without ADHERE on 1,000 websites

using the same list mentioned in Sec. V-A2. Fig. 13 shows the

average page load time before and after ADHERE is applied.

As shown in the figure, when ADHERE is applied, the browser

takes longer to load the web page because (1) ADHERE

introduces additional JavaScript and the browser needs extra

time to parse the code; (2) ADHERE detects violations before

the page is fully loaded (see IV-B) so the page loading process

is slowing down. On average, the overhead of loading a web

page is 44%, which is acceptable.

VI. LIMITATIONS AND FUTURE WORK

While the evaluation of ADHERE on the top one million

websites shows that it is effective, it has three potential

limitations.

First, ADHERE is subject to web page crawling effectiveness.

To identify where violating ads are and the types of violations,

we built web crawlers to visit each website’s homepage and

all the sub-pages. After a page is fully loaded, the crawler

simulates page scroll to detect certain types of ads that can

only appear during/after scroll actions. ADHERE may miss

other violating ads that only can be triggered under certain user

navigation patterns or with particular idle time. In future work,

we will continue to enhance our technique and improve its

performance, especially for ad types ADHERE doesn’t perform

well. For example, we can sample intrusive ads and use machine

learning techniques to train an identification model to increase

accuracy. Moreover, ADHERE could be further improved if

being incorporated with more effective web crawling techniques

like [25]–[29].

495

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

Second, due to the dynamic nature inherent to the web, the

set of violating ads identified by ADHERE may be different

from those observed by Google. Since the full report from

Google is not available, we are not able to verify the details

of their dataset. To reduce the impact of randomness in ad

serving, we performed the comparison experiment during the

same 10-day period. Because an ad’s halflife, or the time an

ad loses 50% of its initial impact, spans between one and

four weeks [30], it is highly likely that the majority of the

ads observed by Google and ADHERE throughout the 10-day

period are the same.

Third, ADHERE cannot recognize the fix practice that a

violating ad is modified and moved to another location on the

same page or other pages. In such cases, it is very challenging

to determine whether two ads are identical. To identify such

fix, ADHERE may be improved by leveraging machine learning

techniques to model ads features and recognize similarities

among ads. We leave this for future work.

VII. RELATED WORK

Online Ad Experiences. Much research effort has been made

to study the impact of ads on website performance and quality

of web experience [4], [10], [31]–[38]. However, none of the

existing work focuses on compliance with the Better Ads

Standards. For example, [31], [32] conducted studies that

measure impact of ads and other contributing factors on the

performance of web pages. A study [4] of 21 Android apps

concluded that in-app advertisements depleted significantly

more computational resources, network bandwidth, and energy.

[39] investigated the effectiveness of various video ad-choice

formats. [40] studied ads that overpass ethical limits, [37]

researched on how mobile apps violated the behavioral policy of

advertisement libraries, and [36] measured smart TV advertising

and tracking. [10] proposed a tool that allows web developers

to specify resource constraints on third-party ad events to

enhance user experience. AdGraph [38] presented a novel graph-

based machine learning approach for detecting advertising and

tracking resources on the web.

Ad Blockers. Ad blockers (such as AdBlock Plus, uBlock

Origin, and AdGuard [41]–[43]) are tools designed to conceal

advertisements on a web page from the user. While one

perspective maintains that advertisements are intrusive [44]

and users should possess complete autonomy over what ad is

considered acceptable and privacy-preserving [42], [45], others

believe that online advertising is a necessary revenue stream

for free websites. Several methods designed to circumvent ad

blockers or whitelist acceptable ads have been proposed [13],

[46]–[48]. For example, WebRanz [13] used randomization that

continuously mutates HTML elements and their attributes, ren-

dering ad blockers unable to recognize ad patterns. On the other

hand, anti-circumvention studies and methods were investigated

to strengthen ad blockers [49]–[53]. ShadowBlock [49] is a

Chromium-based adblocking browser that can hide traces of

adblocking activities from anti-adblockers. CV-Inspector [50]

proposed a machine learning-based approach to automatically

detect ad blocker circumvention using differential analyses.

Privacy and Security Implications. Our work is also related

to privacy and security implications of online advertising [12],

[54]–[60]. FraudDroid [60] detected 335 ad frauds in mobile

Android apps that were confirmed to be true positive results.

MadDroid [59] performed a large-scale study on Android

apps and found that 6% of apps deliver devious ad contents.

MadTracer [61] detected malvertising through dynamic rule

generation. [62] conducted a study of the origins of malvertising

and showed that websites without explicit contracts with

advertisers are prone to delivering malicious ads. The authors

of [56] developed a classifier-based framework for identifying

malicious advertisements. AdJail [63] proposed a framework

that enables web developers to mitigate potentially harmful

ad practices that jeopardize user confidentiality and integrity.

AdSentry [64] protected users from untrusted ads by isolating

their exposure to the main page via customizable access control

policies.

VIII. CONCLUSION

We propose ADHERE, an automated technique to detect

intrusive ads and suggest repair proposals. ADHERE addressed

the challenges entailed by no prior knowledge of ads’ DOM

structures, the volatile nature of dynamic ads, and nested layers

of DOM elements inserted by ad delegations. Our evaluation

on Alexa Top 1 Million Websites shows that ADHERE is

effective in identifying intrusive ads and suggesting repair

proposals. Comparing to the current available alternative,

ADHERE detected violations on more websites and improved

recall and accuracy.

IX. DATA AVAILABILITY

We make our data publicly available at osf.io [18], including

the collected dataset, ADHERE, scripts developed for the

preliminary study, and setup instructions for the programs.

X. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive

feedback. This research was partially supported by the U.S.

National Science Foundation under grant no. CCF-2047980

and CCF-2106871. Any opinions, findings, and conclusions in

this paper are those of the authors only and do not necessarily

reflect the views of our sponsors.

REFERENCES

[1] W3Techs, “Usage of advertising networks for websites,” aug 2019, https:
//w3techs.com/technologies/overview/advertising/all.

[2] M. An, “Why people block ads (and what it means for marketers and
advertisers),” Hubspot Research, 2016.

[3] J. Marshall, “Growth of ad blocking adds to publishers’ worries,” aug
2015, https://blogs.wsj.com/cmo/2015/04/09/growth-of-ad-blocking-adds-
to-publishers-worries/.

[4] J. Gui, S. Mcilroy, M. Nagappan, and W. G. Halfond, “Truth in
advertising: The hidden cost of mobile ads for software developers,”
in Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 2015, pp. 100–110.

[5] D. G. Goldstein, S. Suri, R. P. McAfee, M. Ekstrand-Abueg, and F. Diaz,
“The economic and cognitive costs of annoying display advertisements,”
Journal of Marketing Research, vol. 51, no. 6, pp. 742–752, 2014.

[6] M. Willner, “New data on why people hate ads: Too many, too intrusive,
too creepy,” sep 2016, https://www.vieodesign.com/blog/new-data-why-
people-hate-ads.

496

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

[7] I. L. Kim, Y. Zheng, H. Park, W. Wang, W. You, Y. Aafer, and
X. Zhang, “Finding client-side business flow tampering vulnerabilities,”
in Proceedings of the 42nd International Conference on Software
Engineering, 2020.

[8] C. for Better Ads, “Better ads standards: Least preferred ad
experiences for desktop web and mobile web,” aug 2019,
https://www.betterads.org/standards/.

[9] S. Lee and S. Ryu, “Adlib: Analyzer for mobile ad platform libraries,”
in Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 262–272. [Online].
Available: https://doi.org/10.1145/3293882.3330562

[10] W. Wang, I. L. Kim, and Y. Zheng, “Adjust: runtime mitigation of
resource abusing third-party online ads,” in Proceedings of the 41st
International Conference on Software Engineering. IEEE Press, 2019,
pp. 1005–1015.

[11] I. L. Kim, W. Wang, Y. Kwon, Y. Zheng, Y. Aafer, W. Meng, and
X. Zhang, “Adbudgetkiller: Online advertising budget draining attack,”
in Proceedings of the 2018 World Wide Web Conference, ser. WWW ’18.
Republic and Canton of Geneva, CHE: International World Wide Web
Conferences Steering Committee, 2018, p. 297–307. [Online]. Available:
\url{https://doi.org/10.1145/3178876.3186096}

[12] W. Wang, Y. Kwon, Y. Zheng, Y. Aafer, I. Kim, W.-C. Lee, Y. Liu,
W. Meng, X. Zhang, P. Eugster et al., “Pad: Programming third-party
web advertisement censorship,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Press, 2017, pp. 240–251.

[13] W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and P. Eugster,
“Webranz: web page randomization for better advertisement delivery and
web-bot prevention,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM,
2016, pp. 205–216.

[14] Google Ad Experience Report API, “Rest resource:
sites,” 2019, https://developers.google.com/ad-experience-
report/v1/reference/rest/v1/sites.

[15] Google, “Chrome ad filtering - web tools help: 2020,”
2020, https://support.google.com/webtools/answer/7308033?hl=
en&ref topic=7566613.

[16] Mozilla and individual contributors., “Web apis — mdn,” 2021, https://
developer.mozilla.org/en-US/docs/Web/API/MutationObserver/observe.

[17] A. Clark and Contributors, “Python imaging library,” aug 2019. [Online].
Available: https://pillow.readthedocs.io/en/stable/

[18] AdHere, “Adhere data,” 2022, https://osf.io/s8mhw/?view only=
42a1f52903964e68836faa76f84a180f.

[19] Software Freedom Conservancy, “Selenium,” 2019,
https://www.seleniumhq.org/.

[20] Google, “Chromedriver – webdriver for chrome,” 2019, https://
chromedriver.chromium.org/.

[21] ——, “Headless chromium,” 2019, https://chromium.googlesource.com/
chromium/src/+/lkgr/headless/README.md.

[22] EasyList, “Easylist,” aug 2019, https://easylist.to/.
[23] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE

Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[24] Wiki, “Precision and recall,” 2021, https://en.wikipedia.org/wiki/
Precision and recall.

[25] A. Mesbah, E. Bozdag, and A. Van Deursen, “Crawling ajax by inferring
user interface state changes,” in 2008 Eighth International Conference
on Web Engineering. IEEE, 2008, pp. 122–134.

[26] A. Mesbah and A. Van Deursen, “Invariant-based automatic testing of
ajax user interfaces,” in 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 2009, pp. 210–220.

[27] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip, “A framework
for automated testing of javascript web applications,” in Proceedings of
the 33rd International Conference on Software Engineering, 2011, pp.
571–580.

[28] S. R. Choudhary, M. R. Prasad, and A. Orso, “X-pert: Accurate
identification of cross-browser issues in web applications,” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 702–711.

[29] S. Mahajan, A. Alameer, P. McMinn, and W. G. Halfond, “Xfix:
an automated tool for the repair of layout cross browser issues,” in
Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2017, pp. 368–371.

[30] S. Kerho, “How long does your ad have an impact? - fast com-
pany,” 2021, https://www.fastcompany.com/1665084/how-long-does-your-
ad-have-impact.

[31] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Understanding website
complexity: measurements, metrics, and implications,” in Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement
conference. ACM, 2011, pp. 313–328.

[32] M. Varela, L. Skorin-Kapov, T. Mäki, and T. Hoßfeld, “Qoe in the web:
A dance of design and performance,” in 2015 Seventh International
Workshop on Quality of Multimedia Experience (QoMEX). IEEE, 2015,
pp. 1–7.

[33] J. Gui, M. Nagappan, and W. G. Halfond, “What aspects of mobile ads
do users care about? an empirical study of mobile in-app ad reviews,”
arXiv preprint arXiv:1702.07681, 2017.

[34] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the quality of
experience of web users,” ACM SIGCOMM Computer Communication
Review, vol. 46, no. 4, pp. 8–13, 2016.

[35] D. G. Goldstein, R. P. McAfee, and S. Suri, “The effects of exposure
time on memory of display advertisements,” in Proceedings of the 12th
ACM conference on Electronic commerce. ACM, 2011, pp. 49–58.

[36] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and Z. Shafiq, “The
tv is smart and full of trackers: Measuring smart tv advertising and
tracking,” Proceedings on Privacy Enhancing Technologies, vol. 2020,
no. 2, pp. 129–154, 2020.

[37] F. Dong, H. Wang, L. Li, Y. Guo, G. Xu, and S. Zhang, “How do
mobile apps violate the behavioral policy of advertisement libraries?” in
Proceedings of the 19th International Workshop on Mobile Computing
Systems & Applications, 2018, pp. 75–80.

[38] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq, “Adgraph:
A graph-based approach to ad and tracker blocking,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 763–776.

[39] S. Bellman, R. F. Potter, J. A. Robinson, and D. Varan, “The effectiveness
of various video ad-choice formats,” Journal of Marketing Communica-
tions, pp. 1–20, 2020.

[40] D. Belanche, “Ethical limits to the intrusiveness of online advertising
formats: A critical review of better ads standards,” Journal of marketing
communications, vol. 25, no. 7, pp. 685–701, 2019.

[41] A. Plus, “Adblock plus,” https://adblockplus.org/, aug 2019.
[42] R. Hill, “ublock origin,” aug 2019, https://github.com/gorhill/uBlock.
[43] AdGuard, “Adguard: The world’s most advanced ad blocker!” aug 2019,

https://adguard.com/.
[44] E. Pujol, O. Hohlfeld, and A. Feldmann, “Annoyed users: Ads and ad-

block usage in the wild,” in Proceedings of the 2015 Internet Measurement
Conference. ACM, 2015, pp. 93–106.

[45] K. Garimella, O. Kostakis, and M. Mathioudakis, “Ad-blocking: A study
on performance, privacy and counter-measures,” in Proceedings of the
2017 ACM on Web Science Conference. ACM, 2017, pp. 259–262.

[46] Antiblock, “Anti adblock script,” aug 2019, https://antiblock.org/.
[47] Acceptable Ads, “Acceptable ads standards,” 2019,

https://acceptableads.com/en/.
[48] R. J. Walls, E. D. Kilmer, N. Lageman, and P. D. McDaniel, “Measuring

the impact and perception of acceptable advertisements,” in Proceedings
of the 2015 Internet Measurement Conference. ACM, 2015, pp. 107–120.

[49] S. Zhu, U. Iqbal, Z. Wang, Z. Qian, Z. Shafiq, and W. Chen, “Shadow-
block: A lightweight and stealthy adblocking browser,” in The World
Wide Web Conference, 2019, pp. 2483–2493.

[50] L. Hieu, M. Athina, and S. Zubair, “Cv-inspector: Towards automating
detection of adblock circumvention,” in Network and Distributed System
Security Symposium (NDSS), 2021.

[51] S. Zhu, X. Hu, Z. Qian, Z. Shafiq, and H. Yin, “Measuring and disrupting
anti-adblockers using differential execution analysis,” in The Network
and Distributed System Security Symposium (NDSS), 2018.

[52] U. Iqbal, Z. Shafiq, and Z. Qian, “The ad wars: retrospective measurement
and analysis of anti-adblock filter lists,” in Proceedings of the 2017
Internet Measurement Conference, 2017, pp. 171–183.

[53] S. Zhu, Z. Wang, X. Chen, S. Li, K. Man, U. Iqbal, Z. Qian, K. S. Chan,
S. V. Krishnamurthy, Z. Shafiq et al., “Eluding ml-based adblockers
with actionable adversarial examples,” in Annual Computer Security
Applications Conference, 2021, pp. 541–553.

[54] S. Hussein, P. Meredith, and G. Roşlu, “Security-policy monitoring and
enforcement with javamop,” in Proceedings of the 7th Workshop on
Programming Languages and Analysis for Security. ACM, 2012, p. 3.

[55] D. Samarasinghe, “Malvertising,” aug 2019, https://www.cisecurity.org/
blog/malvertising/.

497

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

[56] P. Poornachandran, N. Balagopal, S. Pal, A. Nair, P. a U, and M. R. Kr-
ishnan, Demalvertising: A Kernel Approach for Detecting Malwares in
Advertising Networks, 11 2017, pp. 215–224.

[57] G. Chen, W. Meng, and J. Copeland, “Revisiting mobile advertising
threats with madlife,” in The World Wide Web Conference, 2019, pp.
207–217.

[58] S. Son, D. Kim, and V. Shmatikov, “What mobile ads know about mobile
users.” in Network and Distributed System Security Symposium (NDSS).
Citeseer, 2016.

[59] T. Liu, H. Wang, L. Li, X. Luo, F. Dong, Y. Guo, L. Wang, T. Bissyandé,
and J. Klein, “Maddroid: Characterizing and detecting devious ad contents
for android apps,” in Proceedings of The Web Conference 2020, 2020,
pp. 1715–1726.

[60] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and
J. Klein, “Frauddroid: Automated ad fraud detection for android apps,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 257–268.

[61] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang, “Knowing your enemy:
understanding and detecting malicious web advertising,” in Proceedings
of the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 674–686.

[62] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel, and
G. Vigna, “The dark alleys of madison avenue: Understanding malicious
advertisements,” in Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM, 2014, pp. 373–380.

[63] M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan, “Adjail: Practical en-
forcement of confidentiality and integrity policies on web advertisements.”
in USENIX Security Symposium, 2010, pp. 371–388.

[64] X. Dong, M. Tran, Z. Liang, and X. Jiang, “Adsentry: comprehensive and
flexible confinement of javascript-based advertisements,” in Proceedings
of the 27th Annual Computer Security Applications Conference. ACM,
2011, pp. 297–306.

498

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 23,2024 at 17:49:19 UTC from IEEE Xplore. Restrictions apply.

